Dual-Resonator-Based (DRB) and Multiple-Resonator-Based (MRB) MEMS Sensors: A Review
Abstract
:1. Introduction
2. Analysis of Resonators
2.1. Single Resonator
2.2. Coupled Resonators
2.2.1. Dual Resonators Coupling
2.2.2. Multiple Resonators Coupling
3. DRB and MRB MEMS Sensors
3.1. SCRB Sensors
3.1.1. ME-SCRB Sensors
3.1.2. EL-SCRB Sensors
3.1.3. MA-SCRB Sensors
3.1.4. Common Mode Rejection of SCRB Sensors
3.1.5. Resolution of SCRB Sensors
3.1.6. Summary
3.2. WCRB Sensors
3.3. UCRB Sensors
3.3.1. DC-UCRB Sensors
3.3.2. Q-UCRB Sensors
3.3.3. PS-UCRB Sensors
3.3.4. Summary
4. Conclusions
5. Future Perspectives of DRB and MRB Sensors
Funding
Conflicts of Interest
References
- Stemme, G. Resonant silicon sensors. J. Micromech. Microeng. 1991, 1, 113. [Google Scholar] [CrossRef]
- Shi, X.; Lu, Y.; Xie, B.; Xiang, C.; Wang, J.; Chen, D. A Double-Ended Tuning Fork Based Resonant Pressure Micro-Sensor Relying on Electrostatic Excitation and Piezoresistive Detection. Proceedings 2018, 2, 875. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Lu, Y.; Xie, B.; Xiang, C.; Wang, J.; Chen, D. A Resonant Pressure Microsensor Based on Double-Ended Tuning Fork and Electrostatic Excitation/Piezoresistive Detection. Sensors 2018, 18, 2494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, B.; Xing, Y.; Wang, Y.; Chen, J.; Chen, D.; Wang, J. A Lateral Differential Resonant Pressure Micro Sensor Based on SOI-Glass Wafer-Level Vacuum Packaging. Sensors 2015, 15, 24257–24268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, B.; Xing, Y.; Wang, Y.; Wang, J.; Chen, D. Vacuum-packaged Resonant Pressure Sensor with Dual Resonators for High Sensitivity and Linearity. Procedia Eng. 2015, 120, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zhao, Z.; Du, L.; Fang, Z. A film bulk acoustic resonator-based high-performance pressure sensor integrated with temperature control system. J. Micromech. Microeng. 2017, 27, 045004. [Google Scholar] [CrossRef]
- Yantchev, V.; Katardjiev, I. Thin film Lamb wave resonators in frequency control and sensing applications: A review. J. Micromech. Microeng 2013, 23, 043001. [Google Scholar] [CrossRef]
- Anderas, E.; Katardjiev, I.; Yantchev, V. Lamb wave resonant pressure micro-sensor utilizing a thin-film aluminum nitride membrane. J. Micromech. Microeng. 2011, 21, 085010. [Google Scholar] [CrossRef]
- Bernstein, J.; Cho, S.; King, A.T.; Kourepenis, A.; Maciel, P.; Weinberg, M. A micromachined comb-drive tuning fork rate gyroscope. In Proceedings of the International Conference on Micro Electro Mechanical Systems, Fort Lauderdale, FL, USA, 10 February 1993; pp. 143–148. [Google Scholar] [CrossRef]
- Liang, W.; Ilchenko, V.S.; Savchenkov, A.; Dale, E.; Eliyahu, D.; Matsko, A.B.; Maleki, L. Resonant microphotonic gyroscope. Optica 2017, 4, 114–117. [Google Scholar] [CrossRef]
- Norouzpour-Shirazi, A.; Zaman, M.F.; Ayazi, F. A Digital Phase Demodulation Technique for Resonant MEMS Gyroscopes. IEEE Sens. J. 2014, 14, 3260–3266. [Google Scholar] [CrossRef]
- Johari, H.; Ayazi, F. Capacitive bulk acoustic wave silicon disk gyroscopes. In Proceedings of the International Electron Devices Meeting, San Francisco, CA, USA, 11–13 December 2006; pp. 1–4. [Google Scholar] [CrossRef]
- Guo, Z.; Cheng, F.; Li, B.; Cao, L.; Lu, C.; Song, K. Research development of silicon MEMS gyroscopes: A review. Microsyst. Technol.-Micro-Nano-Syst.-Inf. Storage Process. Syst. 2015, 21, 2053–2066. [Google Scholar] [CrossRef]
- Tabrizian, R.; Hodjat-Shamami, M.; Ayazi, F. High-Frequency AlN-on-Silicon Resonant Square Gyroscopes. J. Microelectromech. Syst. 2013, 22, 1007–1009. [Google Scholar] [CrossRef]
- Wang, S.; Wei, X.; Zhao, Y.; Jiang, Z.; Shen, Y. A MEMS resonant accelerometer for low-frequency vibration detection. Sens. Actuators A Phys. 2018, 283, 151–158. [Google Scholar] [CrossRef]
- Zhang, J.; Su, Y.; Shi, Q.; Qiu, A. Microelectromechanical Resonant Accelerometer Designed with a High Sensitivity. Sensors 2015, 15, 30293–30310. [Google Scholar] [CrossRef] [Green Version]
- Christensen, D.L.; Ahn, C.H.; Hong, V.; Ng, E.J.; Yang, Y.; Lee, B.; Kenny, T.W. Hermetically encapsulated differential resonant accelerometer. In Proceedings of the International Conference on Solid-State Sensors, Actuators and Microsystems 2013, Barcelona, Spain, 16–20 June 2013; pp. 606–609. [Google Scholar] [CrossRef]
- Du, L.; Fang, Z.; Yan, J.; Zhao, Z. Enabling a wind energy harvester based on ZnO thin film as the building skin. Sens. Actuators A 2017, 260, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Fritsch, H.; Lucklum, R.; Iwert, T.; Hauptmann, P.; Scholz, D.; Peiner, E.A. Schlachetzki, A low-frequency micromechanical resonant vibration sensor for wear monitoring. Sens. Actuators A-Phys. 1997, 62, 616–620. [Google Scholar] [CrossRef]
- Wang, P.; Tanaka, K.; Sugiyama, S.; Dai, X.; Zhao, X.; Liu, J. A micro electromagnetic low level vibration energy harvester based on MEMS technology. Microsyst. Technol.-Micro-Nanosyst.-Inf. Storage Process. Syst. 2009, 15, 941–951. [Google Scholar] [CrossRef]
- Rugar, D.; Budakian, R.; Mamin, H.; Chui, B. Single spin detection by magnetic resonance force microscopy. Nature 2004, 430, 329–332. [Google Scholar] [CrossRef]
- Mamin, H.; Rugar, D. Sub-attonewton force detection at millikelvin temperatures. Appl. Phys. Lett. 2001, 79, 3358–3360. [Google Scholar] [CrossRef]
- Zhu, Y.; Lee, J.E.; Seshia, A. A resonant micromachined electrostatic charge sensor. IEEE Sens. J. 2008, 8, 1499–1505. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Du, L.; Fang, Z.; Zhao, Z. A Sensitivity-Enhanced Film Bulk Acoustic Resonator Gas Sensor with an Oscillator Circuit and Its Detection Application. Micromachines 2017, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Johar, A.K.; Sharma, G.K.; Kumar, T.B.; Varma, T.; Periasamy, C.; Agarwal, A.; Boolchandani, D. Optimization of a flexible film bulk acoustic resonator-based toluene gas sensor. J. Electron. Mater. 2021, 50, 5387–5395. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Z.; Fang, Z.; Liu, Z.; Zhu, Y.; Du, L. High-performance FBAR humidity sensor based on the PI film as the multifunctional layer. Sens. Actuators B Chem. 2020, 308, 127694. [Google Scholar] [CrossRef]
- Zhou, L.; Manceau, J.; Bastien, F. Interaction between gas flow and a Lamb waves based microsensor. Sens. Actuators A 2012, 181, 1–5. [Google Scholar] [CrossRef]
- Howe, R.T.; Muller, R.S. Resonant micro-bridge vapor sensor. IEEE Trans. Electron Devices 1986, 33, 499–506. [Google Scholar] [CrossRef]
- Kong, H.; Lib, C.; Guo, Z.; Zhang, W.; Yao, J.; Zhu, H.; Yan, R.; Wang, L.; Li, J.; Wei, W.; et al. Sensitivity improved with Parylene-C passivized on Lamb wave sensor for aPTT measurement through monitoring whole blood reaction. Sens. Actuators B Chem. 2019, 285, 479–486. [Google Scholar] [CrossRef]
- DeMiguel-Ramos, M.; Díaz-Durán, B.; Escolano, J.; Barba, M.; Mirea, T.; Olivares, J.; Clement, M.; Iborra, E. Gravimetric biosensor based on a 1.3 GHz AlN shear-mode solidly mounted resonator. Sens. Actuators B 2017, 239, 1282–1288. [Google Scholar] [CrossRef] [Green Version]
- Liao, H.S.; Huang, K.Y.; Chang, C.S. Cantilever-based mass sensor using high order resonances for liquid environment. In Proceedings of the International Conference on Advanced Intelligent Mechatronics, Budapest, Hungary, 3–7 July 2011; pp. 652–655. [Google Scholar] [CrossRef]
- Park, K.; Kim, N.; Morisette, D.T.; Aluru, N.; Bashir, R. Resonant MEMS mass sensors for measurement of micro-droplet evaporation. J. Microelectromech. Syst. 2012, 21, 702–711. [Google Scholar] [CrossRef]
- Siwak, N.; Fan, X.; Goldsman, N.; Ghodssi, R. Indium phosphide resonant chemical sensor with a monolithically integrated optical readout scheme. In Proceedings of the IEEE SENSORS, Atlanta, GA, USA, 28–31 October 2007; pp. 1428–1431. [Google Scholar] [CrossRef]
- Lee, H.J.; Park, K.K.; Oralkan, O.; Kupnik, M.; Khuri-Yakub, B.T. A multichannel oscillator for a resonant chemical sensor system. IEEE Trans. Ind. Electron. 2014, 61, 5632–5640. [Google Scholar] [CrossRef]
- Jensen, K.; Kim, K.; Zettl, A. An atomic-resolution nano-mechanical mass sensor. Nat. Nanotechnol. 2008, 3, 533–537. [Google Scholar] [CrossRef]
- Alam, S.; Mittal, U.; Islam, T. The oxide film coated surface acoustic wave resonators for the measurement of relative humidity. IEEE Trans. Instrum. Meas. 2021, 77, 1–9. [Google Scholar] [CrossRef]
- Wang, J.; Park, M.; Mertin, S.; Pensala, T.; Ansari, A. A film bulk acoustic resonator based on ferroelectric aluminum scandium nitride films. J. Microelectromech. Syst. 2020, 29, 741–747. [Google Scholar] [CrossRef]
- Gao, F.; Al-Qahtani, A.M.; Khelif, A.; Boussaid, F.; Bermak, A. Towards acoustic radiation free lamb wave resonators for high-resolution gravimetric biosensing. IEEE Sens. J. 2020, 21, 2725–2733. [Google Scholar] [CrossRef]
- Jin, D.; Liu, J.; Li, X.; Zuo, G.; Wang, Y.; Yu, H.; Ge, X. Tens femtogram resoluble piezoresistive cantilever sensors with optimized high-mode resonance excitation. Proceedings of 1st IEEE International Conference on Nano Micro Engineered and Molecular Systems, 1st IEEE-NEMS 2006, Zhuhai, China, 18–21 January 2006; pp. 832–836. [Google Scholar] [CrossRef]
- Zou, X.; Thiruvenkatanathan, P.; Seshia, A.A. A high resolution micro-electro-mechanical resonant tilt sensor. Sens. Actuators A Phys. 2014, 220, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Thiruvenkatanathan, P.; Seshia, A.A. Micro-electromechanical resonant tilt sensor with 250 nano-radian resolution. In Proceedings of the 2013 Joint European Frequency and Time Forum and International Frequency Control Symposium, EFTF/IFC 2013, Prague, Czech Republic, 21–25 July 2013; pp. 54–57. [Google Scholar] [CrossRef]
- Gupta, A.; Akin, D.; Bashir, R. Single virus particle mass detection using microresonators with nanoscale thickness. Appl. Phys. Lett. 2004, 84, 1976. [Google Scholar] [CrossRef]
- Sone, H.; Okano, H.; Hosaka, S. Picogram mass sensor using piezoresistive cantilever for biosensor. Jpn. J. Appl. Phys. 2004, 43, 4663. [Google Scholar] [CrossRef]
- Ilic, B.; Czaplewski, D.; Zalalutdinov, M.; Craighead, H.G. Single cell detection with micromechanical oscillators. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 2001, 19, 2825–2828. [Google Scholar] [CrossRef]
- Baek, I.; Byun, S.; Lee, B.; Ryu, J.; Kim, Y.; Yoon, Y.; Jang, W.; Lee, S.; Yu, H. Attogram mass sensing based on silicon micro-beam resonators. Sci. Rep. 2017, 7, 46660. [Google Scholar] [CrossRef] [Green Version]
- Davis, Z.J.; Boisen, A. Aluminum nanocantilevers for high sensitivity mass sensors. Appl. Phys. Lett. 2005, 87, 013102. [Google Scholar] [CrossRef] [Green Version]
- Ekinci, K.L.; Huang, X.M.H.; Roukes, M.L. Ultrasensitive nanoelectromechanical mass detection. Appl. Phys. Lett. 2004, 84, 4469–4471. [Google Scholar] [CrossRef] [Green Version]
- Ono, T.; Esashi, M. Magnetic force and optical force sensing with ultrathin silicon resonator. Rev. Sci. Instrum. 2003, 74, 5141–5146. [Google Scholar] [CrossRef]
- Abdolvand, R.; Bahreyni, B.; Lee, J.E.Y.; Nabki, F. Micromachined resonators: A review. Micromachines 2016, 7, 160. [Google Scholar] [CrossRef]
- Wang, S.; Chen, W.; Bahr, B.; Fang, W.; Li, S.; Weinstein, D. Temperature coefficient of frequency modeling for CMOS-MEMS bulk mode composite resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 1166–1178. [Google Scholar] [CrossRef]
- Zhang, S.; Sahin, H.; Torun, E.; Peeters, F.; Martien, D.; DaPron, T.; Dilley, N.; Newman, N. Fundamental mechanisms responsible for the temperature coefficient of resonant frequency in microwave dielectric ceramics. J. Am. Ceram. Soc. 2017, 100, 1508–1516. [Google Scholar] [CrossRef]
- Boom, B.; Bertolini, A.; Hennes, E.; Brookhuis, R.; Wiegerink, R.; Brand, J.; Beker, M.; Oner, A.; Wees, D. Nano-G accelerometer using geometric anti-springs. In Proceedings of the International Conference on Micro Electro Mechanical Systems 2017, Las Vegas, VA, USA, 22–26 January 2017; pp. 33–36. [Google Scholar] [CrossRef] [Green Version]
- Gil-Santos, E.; Ramos, D.; Jana, A.; Calleja, M.; Raman, A.; Tamayo, J. Mass Sensing Based on Deterministic and Stochastic Responses of Elastically Coupled Nanocantilevers. Nano Lett. 2009, 9, 4122–4127. [Google Scholar] [CrossRef]
- Saad, N.H.; Anthony, C.J.; Al-Dadah, R.; Ward, M.C. Exploitation of multiple sensor arrays in electronic nose. In Proceedings of the IEEE SENSORS, Christchurch, New Zealand, 25–28 October 2009; pp. 1575–1579. [Google Scholar] [CrossRef]
- Hajhashemi, M. Characterization of Strongly Coupled Micro-Resonator Systems for Multi-Sensor Applications. Ph.D. Thesis, Simon Fraser University, Burnaby, BC, Canada, 2014. Available online: http://summit.sfu.ca/item/14701 (accessed on 13 November 2014).
- Spletzer, M.; Raman, A.; Wu, A.Q.; Xu, X.; Reifenberger, R. Ultrasensitive mass sensing using mode localization in coupled micro-cantilevers. Appl. Phys. Lett. 2006, 88, 254102. [Google Scholar] [CrossRef] [Green Version]
- Spletzer, M.; Raman, A.; Sumali, H.; Sullivan, J.P. Highly sensitive mass detection and identification using vibration localization in coupled micro cantilever arrays. Appl. Phys. Lett. 2008, 92, 114102. [Google Scholar] [CrossRef] [Green Version]
- Hajhashemi, M.; Rasouli, A.; Bahreyni, B.; Member, S. Improving Sensitivity of Resonant Sensor Systems Through Strong Mechanical Coupling. IEEE J. Microelectromech. Syst. 2016, 25, 52–59. [Google Scholar] [CrossRef]
- DeMartini, B.E.; Rhoads, J.F.; Zielke, M.A. A single input-single output coupled microresonator array for the detection and identification of multiple analytes. Appl. Phys. Lett. 2008, 93, 54102. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.; Yang, J.; Chang, H. A mode-localized accelerometer based on four degree-of-freedom weakly coupled resonators. In Proceedings of the 2018 IEEE Micro Electro Mechanical Systems (MEMS), Belfast, UK, 21–25 January 2018; pp. 960–963. [Google Scholar] [CrossRef]
- Ruan, B.; Hao, Y.; Kang, H.; Shen, Q.; Chang, H. A Mode localized Tilt Sensor with Resolution of 2.4e-5 Degrees within the Range of 50 Degrees. In Proceedings of the INERTIAL 2020—7th IEEE International Symposium on Inertial Sensors and Systems, Proceedings, Hiroshima, Japan, 23–26 March 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, W.; Huang, J.; Li, B.; Chang, H. A high-sensitive resonant electrometer based on mode localization of the weakly coupled resonators. In Proceedings of the International Conference on Micro Electro Mechanical Systems 2016, Shanghai, China, 24–28 January 2016; pp. 87–90. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, J.; Yuan, W.; Chang, H. A high-sensitivity micromechanical electrometer based on mode localization of two degree of-freedom weakly coupled resonators. J. Microelectromech. Syst. 2016, 25, 937–946. [Google Scholar] [CrossRef]
- Zhang, H.M.; Yuan, W.Z.; Li, B.Y.; Hao, Y.C.; Kraft, M.; Chang, H.L. A novel resonant accelerometer based on mode localization of weakly coupled resonators. In Proceedings of the International Conference on Solid State Sensors Actuators and Microsystems, Anchorage, AL, USA, 21–25 June 2015; pp. 1073–1076. [Google Scholar] [CrossRef]
- Zhang, H.; Li, B.; Yuan, W.; Kraft, M.; Chang, H. An acceleration sensing method based on the mode localization of weakly coupled resonators. J. Microelectromech. Syst. 2016, 25, 286–296. [Google Scholar] [CrossRef]
- Kang, H.; Yang, J.; Chang, H. A Closed-Loop Accelerometer Based on Three Degree-of-Freedom Weakly Coupled Resonator with Self-Elimination of Feedthrough Signal. IEEE Sens. J. 2018, 18, 3960–3967. [Google Scholar] [CrossRef]
- Zhang, H.; Kang, H.; Chang, H. Suppression on Nonlinearity of Mode-Localized Sensors Using Algebraic Summation of Amplitude Ratios as the Output Metric. IEEE Sens. J. 2018, 18, 7802–7809. [Google Scholar] [CrossRef]
- Rabenimanana, T.; Walter, V.; Kacem, N.; Le Moal, P.; Bourbon, G.; Lardies, J. Mass sensor using mode localization in two weakly coupled MEMS cantilevers with different lengths: Design and experimental model validation. Sens. Actuators A Phys. 2019, 295, 643–652. [Google Scholar] [CrossRef] [Green Version]
- Chellasivalingam, M.; Pandit, M.; Kalberer, M.; Seshia, A. Ultra-fine Particulate Detection using Mode-localized MEMS Resonators. In Proceedings of the IFCS/EFTF 2019—Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum, Proceedings 2019, Orlando, FL, USA, 14–18 April 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Pandit, M.; Zhao, C.; Sobreviela, G.; Zou, X.; Seshia, A. A High Resolution Differential Mode-Localized MEMS Accelerometer. J. Microelectromech. Syst. 2019, 28, 782–789. [Google Scholar] [CrossRef]
- Yang, J.; Zhong, J.; Chang, H. A Closed-Loop Mode-Localized Accelerometer. J. Microelectromech. Syst. 2018, 27, 210–217. [Google Scholar] [CrossRef]
- Zhang, H.; Chang, H.; Yuan, W. Characterization of forced localization of disordered weakly coupled micromechanical resonators. Microsyst. Nanoeng. 2017, 3, 17023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandit, M.; Zhao, C.; Sobreviela, G.; Du, S.; Zou, X.; Seshia, A. Utilizing Energy Localization in Weakly Coupled Nonlinear Resonators for Sensing Applications. J. Microelectromech. Syst. 2019, 28, 1–7. [Google Scholar] [CrossRef]
- Thiruvenkatanathan, P.; Yan, J.; Woodhouse, J.; Seshia, A. Enhancing parametric sensitivity in electrically coupled MEMS resonators. J. Microelectromech. Syst. 2009, 18, 1077–1086. [Google Scholar] [CrossRef]
- Thiruvenkatanathan, P.; Yan, J.; Woodhouse, J.; Aziz, A.; Seshia, A. Effects of mechanical and electrical coupling on the parametric sensitivity of mode localized sensors. In Proceedings of the IEEE International Ultrasonics Symposium Proceedings 2009, Rome, Italy, 20–23 September 2009; pp. 1183–1186. [Google Scholar] [CrossRef] [Green Version]
- Pourkamali, S.; Ayazi, F. Electrically coupled mems band pass filters: Part II. Without coupling element. Sens. Actuators A Phys. 2005, 122, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Thiruvenkatanathan, P.; Yan, J.; Woodhouse, J.; Aziz, A.; Seshia, A. Ultrasensitive mode-localized mass sensor with electrically tunable parametric sensitivity. Appl. Phys. Lett. 2010, 96, 3562–3563. [Google Scholar] [CrossRef] [Green Version]
- Thiruvenkatanathan, P.; Seshia, A. Mode-Localized Displacement Sensing. J. Microelectromech. Syst. 2012, 21, 1016–1018. [Google Scholar] [CrossRef]
- Thiruvenkatanathan, P.; Yan, J.; Seshia, A. Ultrasensitive mode-localized micromechanical electrometer. In Proceedings of the International Frequency Control Symposium 2010, Newport Beach, CA, USA, 1–4 June 2010; pp. 91–96. [Google Scholar] [CrossRef] [Green Version]
- Lyu, M.; Zhao, J.; Kacem, N.; Tang, B.; Liu, P.; Song, J.; Zhong, H.; Huang, Y. Computational investigation of high-order mode localization in electrostatically coupled microbeams with distributed electrodes for high sensitivity mass sensing. Mech. Syst. Signal Process. 2021, 158, 107781. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, C.; Wang, C.; Cerica, D.; Baijot, M.; Xiao, Q.; Stoukatch, S.; Kraft, M. A mass sensor based on 3-DOF mode localized coupled resonator under atmospheric pressure. Sens. Actuators A 2018, 279, 254–262. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Zhao, C.; Liu, H.; Cerica, D.; Baijot, M.; Dupont, F.; Stoukatch, S.; Fraft, M. A Novel Qcm Mass Sensing System Incorporated with A 3-Dof Mode Localized Coupled Resonator Stiffness Sensor. In Proceedings of the 2019 20th Int. Conf. Solid-State Sensors, Actuators Microsystems Eurosensors XXXIII, Transducers 2019 Eurosensors XXXIII 2019, Berlin, Germany, 23–27 June 2019; pp. 1823–1826. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Wang, C.; Zhao, C.; Kraft, M. Towards a hybrid mass sensing system by combining a qcm mass sensor with a 3-dof mode localized coupled resonator stiffness sensor. IEEE Sens. J. 2021, 21, 8988–8997. [Google Scholar] [CrossRef]
- Zhao, C.; Wood, G.S.; Xie, J.; Chang, H.; Pu, S.H.; Chong, H.M.; Kraft, M. A sensor for stiffness change sensing based on three weakly coupled resonators with enhanced sensitivity. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS) 2015, Estoril, Portugal, 18–22 January 2015; pp. 881–884. [Google Scholar] [CrossRef]
- Zhao, C.; Wood, G.S.; Xie, J.; Chang, H.; Pu, S.; Kraft, M. A three degree-of-freedom weakly coupled resonator sensor with enhanced stiffness sensitivity. J. Microelectromech. Syst. 2016, 25, 38–51. [Google Scholar] [CrossRef]
- Zhao, C.; Wood, G.S.; Xie, J.; Chang, H.; Pu, S.; Kraft, M. A comparative study of output metrics for a MEMS resonant sensor consisting of three weakly coupled resonators. J. Microelectromech. Syst. 2016, 25, 626–636. [Google Scholar] [CrossRef]
- Zhao, C.; Wood, G.S.; Xie, J.; Chang, H.; Pu, S.; Kraft, M. A force sensor based on three weakly coupled resonators with ultrahigh sensitivity. Sens. Actuators A-Phys. 2015, 232, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Pandit, M.; Sobreviela, G.; Mustafazade, A.; Du, S.; Seshia, A. On the Noise Optimization of Resonant MEMS Sensors Utilizing Vibration Mode Localization. Appl. Phys. Lett. 2018, 112, 194103. [Google Scholar] [CrossRef]
- Pai, P.; Pourzand, H.; Tabib-Azar, M. Magnetically coupled resonators for rate integrating gyroscopes. In Proceedings of the IEEE SENSORS, Valencia, Spain, 2–5 November 2014; pp. 1173–1176. [Google Scholar] [CrossRef]
- Thiruvenkatanathan, P.; Yan, J.; Seshia, A. Common mode rejection in electrically coupled MEMS resonators utilizing mode localization for sensor application. In Proceedings of the International Frequency Control Symposium 2009, Besancon, France, 20 April 2009; pp. 358–363. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhong, J.; Yuan, W.; Yang, J.; Chang, H. Ambient pressure drift rejection of mode-localized resonant sensors. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS) 2017, Las Vegas, NA, USA, 22–26 January 2017; pp. 1095–1098. [Google Scholar] [CrossRef]
- Zhong, J.; Yang, J.; Chang, H. The temperature drift suppression of mode-localized resonant sensors. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS) 2018, Belfast, UK, 21–25 January 2018; pp. 467–470. [Google Scholar] [CrossRef]
- Pandit, M.; Zhao, C.; Sobreviela, G.; Seshia, A. Immunity to Temperature Fluctuations in Weakly Coupled MEMS Resonators. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Kang, H.; Ruan, B.; Hao, Y.; Chang, H. A Mode-Localized Resonant Accelerometer with Self-Temperature Drift Suppression. IEEE Sens. J. 2020, 20, 12154–12165. [Google Scholar] [CrossRef]
- Pandit, M.; Zhao, C.; Sobreviela, G.; Seshia, A. Practical Limits to Common Mode Rejection in Mode Localized Weakly Coupled Resonators. IEEE Sens. J. 2020, 20, 6818–6825. [Google Scholar] [CrossRef]
- Juillard, J.; Prache, P.; Ferreira, P.M.; Barniol, N. Impact of output metric on the resolution of mode-localized MEMS resonant sensors. In Proceedings of the 2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFC) 2017, Besancon, France, 9–13 July 2017; pp. 506–509. [Google Scholar] [CrossRef]
- Juillard, J.; Prache, P.; Ferreira, P.M.; Barniol, N. Ultimate limits of differential resonant MEMS sensors based on two coupled linear resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 2440–2448. [Google Scholar] [CrossRef] [PubMed]
- Thiruvenkatanathan, P.; Woodhouse, J.; Yan, J.; Seshia, A. Limits to mode-localized sensing using micro- and nanomechanical resonator arrays. J. Appl. Phys. 2011, 109, 104903. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Chang, H. Resolution limit of mode-localised sensors. Sci. China Inf. Sci. 2021, 64, 1–10. [Google Scholar]
- Yang, J.; Kang, H.; Chang, H. A micro resonant electrometer with 9-electron charge resolution in room temperature. In Proceedings of the 2018 IEEE Micro Electro Mechanical Systems (MEMS) 2018, Belfast, UK, 21–25 January 2018; pp. 67–70. [Google Scholar] [CrossRef]
- Kang, H.; Ruan, B.; Hao, Y.; Chang, H. A micromachined electrometer with room temperature resolution of 0.256 e/√ Hz. IEEE Sens. J. 2020, 20, 95–101. [Google Scholar] [CrossRef]
- Pandit, M.; Zhao, C.; Sobreviela, G.; Mustafazade, A.; Du, S.; Zou, X.; Seshia, A.A. Closed-Loop Characterization of Noise and Stability in a Mode-Localized Resonant MEMS Sensor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 66, 170–180. [Google Scholar] [CrossRef]
- Liang, J.; Hao, Y.; Kang, H.; Ruan, B.; Chang, H. A Mode-Localized Voltmeter with Resolution of 46.8 Nanovolts. In Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII, TRANSDUCERS and EUROSENSORS XXXIII 2019, Berlin, Germany, 23–27 June 2019; pp. 226–229. [Google Scholar] [CrossRef]
- Peng, B.; Hu, K.; Shao, L.; Yan, H.; Li, L.; Wei, X.; Zhang, W. A Sensitivity Tunable Accelerometer Based on Series-Parallel Electromechanically Coupled Resonators Using Mode Localization. J. Microelectromech. Syst. 2020, 29, 3–13. [Google Scholar] [CrossRef]
- Stassi, S.; Laurentis, G.D.; Chakraborty, D.; Bejtka, K.; Chiodoni, A.; Sader, J.E.; Ricciardi, C. Large-scale parallelization of nanomechanical mass spectrometry with weakly-coupled resonators. Nat. Commun. 2019, 10, 3647. [Google Scholar] [CrossRef] [Green Version]
- Pachkawade, V. State-of-the-Art in Mode-Localized MEMS Coupled Resonant Sensors: A Comprehensive Review. IEEE Sens. J. 2021, 21, 8751–8779. [Google Scholar] [CrossRef]
- Malar, C.; Brian, G.; Adam, B.; Ashwin, A.S. Mass Tuning in Weakly Coupled Low-Q Piezoelectric MEMS Resonator Arrays for Particulate Sensing. In Proceedings of the 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) 2020, Vancouver, BC, USA, 18–22 January 2020; pp. 761–764. [Google Scholar] [CrossRef]
- Manav, M.; Phani, A.S.; Cretu, E. Mode Localization and Sensitivity in Weakly Coupled Resonators. IEEE Sens. J. 2019, 19, 2999–3007. [Google Scholar] [CrossRef] [Green Version]
- Tabrizian, R.; Ayazi, F. Acoustically-Engineered Multi-Port AlN-on-Silicon Resonators for Accurate Temperature Sensing. In Proceedings of the IEEE International Electron Devices Meeting 2013, Washington, DC, USA, 9–11 December 2013. [Google Scholar] [CrossRef]
- Tabrizian, R. Temperature-Compensated Silicon-Based Bulk Acoustic Resonators. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2013. Available online: https://smartech.gatech.edu/bitstream/handle/1853/52929/TABRIZIAN-DISSERTATION-2013.pdf (accessed on 27 October 2021).
- Tabrizian, R.; Ayazi, F. Dual-Mode Vertical Membrane Resonant Pressure Sensor. In Proceedings of the MEMS 2014, San Francisco, CA, USA, 26–30 January 2014; pp. 120–123. [Google Scholar] [CrossRef]
- Schodowski, S. Resonator self-temperature-sensing using a dual-harmonic-mode crystal oscillator. In Proceedings of the Annual Symposium on Frequency Control 1989, Denver, CO, USA, 31 May–2 June 1989; pp. 2–7. [Google Scholar] [CrossRef]
- Campanella, H.; Narducci, M.; Merugu, S.; Singh, N. Dual MEMS Resonator Structure for Temperature Sensor Applications. IEEE Trans. Electron Devices 2017, 64, 3368–3377. [Google Scholar] [CrossRef]
- Dalal., M.J.; Fu, J.L.; Ayazi, F. Simultaneous Dual-Mode Excitation of Piezo-on-Silicon Micromechanical Oscillator for Self-Temperature Sensing. In Proceedings of the International Conference on Micro Electro Mechanical Systems 2011, Cancun, Mexico, 23–27 January 2011; pp. 489–492. [Google Scholar] [CrossRef]
- Fu, J.; Tabrizian, R.; Ayazi, F. Dual-Mode AlN-on-Silicon Micromechanical Resonators for Temperature Sensing. IEEE Trans. Electron. Devices 2014, 61, 591–598. [Google Scholar] [CrossRef]
- Garcia-Gancedo, L.; Pedros, J.; Zhao, X.B.; Ashley, G.M.; Flewitt, A.J.; Milne, W.I.; Ford, C.J.B.; Lu, J.R.; Luo, J.K. Dual-mode thin film bulk acoustic wave resonators for parallel sensing of temperature and mass loading. Biosens. Bioelectron. 2012, 38, 369–374. [Google Scholar] [CrossRef]
- Gu, C.C.; Xuan, W.P.; Dong, S.R.; Wang, X.Z.; Li, H.L.; Yu, L.Y.; Luo, J.K. Temperature calibrated on-chip dual-mode film bulk acoustic resonator pressure sensor with a sealed back-trench cavity. J. Micromech. Microeng 2018, 28, 075010. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Luo, Z.; Chen, D.; Chen, J. A Resonant Pressure Microsensor Capable of Self-Temperature Compensation. Sensors 2015, 15, 10048–10058. [Google Scholar] [CrossRef] [Green Version]
- Xie, Q.; Wang, N.; Sun, C.; Randles, A.; Singh, P.; Zhang, X.; Gu, Y. A Passively Temperature-Compensated Dual-Frequency AlN-On-Silicon Resonator for Accurate Pressure Sensing. In Proceedings of the International Conference on Micro Electro Mechanical Systems 2017, Las Vegas, NV, USA, 22–26 January 2017; pp. 977–981. [Google Scholar] [CrossRef]
- Roshan, M.; Zaliasl, S.; Joo, K.; Souri, K.; Palwai, R.; Chen, L.; Singh, A.; Pamarti, S.; Miller, N.; Doll, J.; et al. A MEMS-Assisted Temperature Sensor With 20-μK Resolution, Conversion Rate of 200 S/s, and FOM of 0.04 pJK2. IEEE J. Solid-State Circuits 2017, 52, 185–197. [Google Scholar] [CrossRef]
- Ng, E.J.; Lee, H.K.; Ahn, C.H.; Melamud, R.; Kenny, T.W. Stability of silicon microelectromechanical systems resonant thermometers. IEEE Sens. J. 2013, 13, 987–993. [Google Scholar] [CrossRef]
- Vig, J.R. Dual-mode oscillators for clocks and sensors. In Proceedings of the International Ultrasonics Symposium 1999, Lake Tahoe, NV, USA, 17–20 October 1999; pp. 859–868. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Montaseri, M.; Wood, G.; Pu, S.; Seshia, A.; Kraft, M. A review on coupled MEMS resonators for sensing applications utilizing mode localization. Sens. Actuators A 2016, 249, 93–111. [Google Scholar] [CrossRef]
- Wang, K.; Nguye, C.C. High-order medium frequency micromechanical electronic filters. J. Microelectromech. Syst. 1999, 8, 534–556. [Google Scholar] [CrossRef] [Green Version]
- Hung, L. High-Q Low-Impedance MEMS Resonators. Ph.D. Thesis, Electrical Engineering and Computer Sciences University of California, Berkeley, CA, USA, 2012. Available online: https://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-218.pdf (accessed on 1 December 2012).
- Motiee, M. MEMS IF/RF Filters. Master’s Thesis, Department of Mechanical Engineering, University of Waterloo, Waterloo, ON, Canada, 2003. [Google Scholar]
- Wang, K.; Wong, A.C.; Nguyen, C.T.C. VHF free-free beam high-Q micromechanical resonators. J. Microelectromech. Syst. 2000, 9, 347–360. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.A. Mechanical Filters in Electronics; Wiley: New York, NY, USA, 1983; Available online: https://openlibrary.org/books/OL3491136M/Mechanical_filters_in_electronics (accessed on 26 August 1998).
- Weinstein, D.; Bhave, S.; Tada, M.; Mitarai, S.; Morita, S. Mechanical Coupling of 2D Resonator Arrays for MEMS Filter Applications. In Proceedings of the IEEE International Frequency Control Symposium 2007, Geneva, Switzerland, 29 May–1 June 2007; pp. 1362–1365. [Google Scholar] [CrossRef]
- Chandrahalim, H.; Bhave, S. Digitally-tunable MEMS filter using mechanically coupled resonator array. In Proceedings of the International Conference on Micro Electro Mechanical Systems 2008, Tucson, AZ, USA, 13–17 January 2008; pp. 1020–1023. [Google Scholar] [CrossRef]
- Lopez, J.; Verd, J.; Uranga, A.; Murillo, G.; Giner, J.; MarigÃ, E.; Torres, F.; Abadal, G.; Barniol, N. VHF band-pass filter based on a single CMOS-MEMS double ended tuning fork resonator. Procedia Chem. 2009, 1, 1131–1134. [Google Scholar] [CrossRef] [Green Version]
- Motiee, M.; Mansour, R.R.; Khajepour, A. Novel MEMS filters for on-chip transceiver architecture, modeling and experiments. J. Micromech. Microeng. 2006, 16, 407–418. [Google Scholar] [CrossRef]
- Giessibl, F.J. A direct method to calculate tip sample forces from frequency shifts in frequency modulation atomic force microscopy. Appl. Phys. Lett. 2001, 78, 123–125. [Google Scholar] [CrossRef]
- Seshia, A.; Palaniapan, M.; Roessig, T.; Howe, R.; Gooch, R.; Schimert, T.; Montague, S. A vacuum packaged surface micromachined resonant accelerometer. J. Microelectromech. Syst. 2002, 11, 784–793. [Google Scholar] [CrossRef] [Green Version]
- Leeson, D.B. A simple model of feedback oscillator noise. Proc. IEEE 1966, 54, 329–330. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Pandit, M.; Sobreviela, G.; Mustafazade, A.; Du, S.; Zou, X.; Seshia, A. A Direct Feedback Oscillator Topology Employing Weakly Coupled Resonators for Gain Control. In Proceedings of the IEEE International Frequency Control Symposium (IFCS) 2018, Olympic Valley, CA, USA, 21–24 May 2018. [Google Scholar] [CrossRef]
Sensitivity of Frequency | Sensitivity of Eigenstate | Common Change Rejection | |
---|---|---|---|
Single resonator | 1/2 | Non | Non |
Dual resonators | Strongly-coupled | Weakly-coupled | Can |
K/(2κ)/(two to three orders) [123] | K/(2κ) [123] | ||
Triple resonators | Strongly-coupled | Weakly-coupled | Can |
Non | 4(K2− Keff + Kc)/Kc |
Number of Coupled Resonators | Sensor | Change of Frequency | Weakly Coupled | Strongly Coupled | Improvement |
---|---|---|---|---|---|
Shift of Eigenstates | Beat Frequency | ||||
Dual resonators | Mass sensor [56] | 0.01% | 5–7% | ---- | two orders |
Mass sensor [58] | ---- | ---- | yes | 20% | |
Electrometers [63] | 283.56 ppm | 663,751 ppm | ---- | three orders | |
Accelerometer [64] | 1035 ppm/g | 312,162 ppm/g | ---- | 302 times | |
Mass sensor [68] | 0.03%/pg | 2.5%/pg | ---- | two orders | |
Mass sensor [69] | −0.17 | 422 | ---- | 2482 times | |
Multiple resonators | Mass sensor [57] | 0.1% | 10–100% | ---- | two to three orders |
Mass sensor [55] | 4.2 kHz | ---- | High coupling ratio High sensitivity | ---- | |
Accelerometer [66] | 11.46 Hz/g | 705,000 ppm/g | ---- | 1410 times |
Sensor | Shift of Frequency | Shift of Eigenstates | Improvement |
---|---|---|---|
Mass sensor [77] | 0.00237% | 4.32% or 3.448% | Two orders |
Displacement sensor [78] | maximum 0.005% | maximum 1.8% | Three orders |
Electrometer [79] | maximum 0.006% | maximum 1.8% | Nearly three orders |
Mass sensor [80] | 0.02% | 221% | More than four orders |
Sensor Type | Reference | Output of Sensor | Amplitude Ratio | Improvement | Improvement |
---|---|---|---|---|---|
As Frequency Shift | As Eigenstate Shift | ||||
Mass sensor | [81] | Amplitude ratio | 25.31% | Nearly two orders | Nearly two times |
[82] | Amplitude ratio | 0.4% | Nearly two orders | ---- | |
[83] | Amplitude ratio | 35.6 | More than three orders | ---- | |
Stiffness sensor | [84] | Amplitude ratio | 13,558 | More than three orders | 56 times |
[79] | Shift of eigenstates | 275 | Two orders | ---- | |
[133] | Shift of frequency | 0.5 | ---- | ---- | |
Force sensor | [87] | Amplitude ratio | 4.9e6/N | Two orders | More than three orders |
[79] | Shift of eigenstates | 1478/N | ---- | ---- | |
[134] | Shift of frequency | 8995/N | ---- | ---- |
Reference | Resolution Limit Model |
---|---|
J. Juillard [96,97] | |
A. Seshia [98] | |
Chang [99] |
Output | Resolution Limit Model | |
---|---|---|
Frequency Output Metric | ||
AR Output Metric | 2-DoF | |
3-DoF | ||
4-DoF |
Reference | Coupling Way | Sensitivity | Merits |
---|---|---|---|
[109] | 3rd width-extensional mode (WE3) and cross-sectional distortional mode | −8300 ppm/°C | High temperature sensitivity |
[110] | 1st width-extensional mode (WE1) and 2nd Width-shear mode (WS2) | ---- | Q enhancement and TCF reduction |
[111] | 3rd length-extensional mode (LE3) and transverse flexural mode | 346 ppm/kPa | High pressure sensitivity |
Sensor | Mode | Output |
---|---|---|
Temperature sensor [114] | Fundamental (f1) and third-order (f3) length extensional mode | TCF 162 ppm/°C |
Temperature sensor [115] | In-plane width-shear (WS) and width-extensional (WE) modes | TCF 1480 ppm/°C |
Temperature sensor [109] | in-plane and out-of-plane lamb wave mode | TCF 8292 ppm/°C |
Temperature and mass-loading sensor [116] | FBAR | Mass loading and the temperature |
Pressure sensor [117] | FBAR | Mode 1: 1.642 ppm(kPa)−1 Mode 2: 0.1764 ppm(kPa)−1 |
Sensor | Temperature Compensation Method | Output |
---|---|---|
Pressure sensor [118] | Algorithm compensation | Low error less than ±0.01% |
High pressure sensor [119] | Algorithm compensationand material matching | Non-linearity of 2.28 % F.S |
Temperature sensor [120] | Hardware deducing | High resolution of 20 μK |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Zhao, Z.; Fang, Z.; Du, L. Dual-Resonator-Based (DRB) and Multiple-Resonator-Based (MRB) MEMS Sensors: A Review. Micromachines 2021, 12, 1361. https://doi.org/10.3390/mi12111361
Zhu Y, Zhao Z, Fang Z, Du L. Dual-Resonator-Based (DRB) and Multiple-Resonator-Based (MRB) MEMS Sensors: A Review. Micromachines. 2021; 12(11):1361. https://doi.org/10.3390/mi12111361
Chicago/Turabian StyleZhu, Yusi, Zhan Zhao, Zhen Fang, and Lidong Du. 2021. "Dual-Resonator-Based (DRB) and Multiple-Resonator-Based (MRB) MEMS Sensors: A Review" Micromachines 12, no. 11: 1361. https://doi.org/10.3390/mi12111361
APA StyleZhu, Y., Zhao, Z., Fang, Z., & Du, L. (2021). Dual-Resonator-Based (DRB) and Multiple-Resonator-Based (MRB) MEMS Sensors: A Review. Micromachines, 12(11), 1361. https://doi.org/10.3390/mi12111361