[OPy][BF4] Selective Extraction for Trace Hg2+ Detection by Electrochemistry: Enrichment, Release and Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regents and Instruments
2.2. Procedures for TC-DLLME and Separation
2.3. Electrochemical Detection
2.4. Procedures for Mercury Detection Based on TC-DLLME
3. Results
3.1. Preconcentration
3.1.1. The Enrichment Factor
3.1.2. Mechanism
3.2. The Electrochemical Activity of Hg
3.3. Optimization of Electrochemical Detection
3.3.1. Effect of Volume Ratios of IL, HO and ACN
3.3.2. Effect of Deposition Time
3.4. Analytical Performance
3.4.1. Electrochemistry Based on Microextraction for the Detection
3.4.2. Anti-Interference Research
3.4.3. Test in the Tap Water
3.4.4. Comparison of Analytical Performance with Other Reports
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Clevenger, W.L.; Smith, B.W.; Winefordner, J.D. Trace determination of mercury: A Review. Crit. Rev. Anal. Chem. 1997, 27, 1–26. [Google Scholar] [CrossRef]
- Leopold, K.; Foulkes, M.; Worsfold, P.J. Preconcentration techniques for the determination of mercury species in natural waters. TrAC Trends Anal. Chem. 2009, 28, 426–435. [Google Scholar] [CrossRef]
- Zhang, R.; Peng, M.; Zheng, C.; Xu, K.; Hou, X. Application of flow injection–green chemical vapor generation–atomic fluorescence spectrometry to ultrasensitive mercury speciation analysis of water and biological samples. Microchem. J. 2016, 127, 62–67. [Google Scholar] [CrossRef]
- Hight, S.C.; Cheng, J. Determination of total mercury in seafood by cold vapor-atomic absorption spectroscopy (CVAAS) after microwave decomposition. Food Chem. 2005, 91, 557–570. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Q.; Li, S.; Luan, L.; Li, J.; Zhang, S.-X.; Dong, H. Hollow fiber supported ionic liquid membrane microextraction for speciation of mercury by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Anal. Methods 2014, 7, 1140–1146. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, B.; He, M.; Huang, T.; Hu, B. Speciation of mercury in water and fish samples by HPLC-ICP-MS after magnetic solid phase extraction. Talanta 2017, 171, 213–219. [Google Scholar] [CrossRef]
- Eskandari, L.; Andalib, F.; Fakhri, A.; Jabarabadi, M.K.; Pham, B.; Gupta, V.K. Facile colorimetric detection of Hg (II), photocatalytic and antibacterial efficiency based on silver-manganese disulfide/polyvinyl alcohol-chitosan nanocomposites. Int. J. Biol. Macromol. 2020, 164, 4138–4145. [Google Scholar] [CrossRef]
- Safavi, A.; Ahmadi, R.; Mohammadpour, Z. Colorimetric sensing of silver ion based on anti aggregation of gold nanoparticles. Sens. Actuators B 2017, 242, 609–615. [Google Scholar] [CrossRef]
- Hui, Y.; Xiong, C.; Bian, C.; Gui, S.; Tong, J.; Li, Y.; Gao, C.; Huang, Y.; Tang, W.C.; Xia, S. Temperature-controlled ionic liquid dispersive liquid–liquid microextraction combined with fluorescence detection of ultra-trace Hg2+ in water. Anal. Methods 2019, 11, 2669–2676. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.C.; Zhang, W.J.; Cai, Y.J.; Kwok, R.T.K.; Hu, Y.B.; Lam, J.W.Y.; Gu, X.G.; He, Z.K.; Zhao, Z.; Zheng, X.Y.; et al. AIEgens for dark through-bond energy transfer: Design, synthesis, theoretical study and application in ratiometric Hg2+ sensing. Chem. Sci. 2017, 8, 2047–2055. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Chan, C.; Pang, Y.; Ye, W.; Tian, F.; Lyu, J.; Zhang, Y.; Yang, M. A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus. Biosens. Bioelectron. 2015, 67, 595–600. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, H.; Fu, H.; Wei, Y.; Cai, W. Raman reporter-assisted Au nanorod arrays SERS nanoprobe for ultrasensitive detection of mercuric ion (Hg2+) with superior anti-interference performances. J. Hazard. Mater. 2020, 398, 122890. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Yin, H.; Ma, W.; Kuang, H.; Wang, L.; Xu, C. Ultrasensitive SERS detection of mercury based on the assembled gold nanochains. Biosens. Bioelectron. 2015, 67, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Murugan, E.; Santhoshkumar, S.; Govindaraju, S.; Palanichamy, M. Silver nanoparticles decorated g-C3N4: An efficient SERS substrate for monitoring catalytic reduction and selective Hg2+ions detection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 246, 119036. [Google Scholar] [CrossRef]
- Jia, S.; Bian, C.; Sun, J.; Tong, J.; Xia, S. A wavelength-modulated localized surface plasmon resonance (LSPR) optical fiber sensor for sensitive detection of mercury(II) ion by gold nanoparticles-DNA conjugates. Biosens. Bioelectron. 2018, 114, 15–21. [Google Scholar] [CrossRef]
- Li, Z.; Xia, S.; Wang, J.; Bian, C.; Tong, J. Determination of trace mercury in water based on N-octylpyridinium ionic liquids preconcentration and stripping voltammetry. J. Hazard. Mater. 2016, 301, 206–213. [Google Scholar] [CrossRef]
- Palanisamy, S.; Thangavelu, K.; Chen, S.-M.; Velusamy, V.; Chang, M.-H.; Chen, T.-W.; Al-Hemaid, F.M.A.; Ali, M.A.; Ramaraj, S.K. Synthesis and characterization of polypyrrole decorated graphene/β-cyclodextrin composite for low level electrochemical detection of mercury (II) in water. Sens. Actuators B 2017, 243, 888–894. [Google Scholar] [CrossRef] [Green Version]
- Bui, M.-P.N.; Brockgreitens, J.; Ahmed, S.; Abbas, A. Dual detection of nitrate and mercury in water using disposable electrochemical sensors. Biosens. Bioelectron. 2016, 85, 280–286. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Wang, Y.; Zhang, Y.; Ma, H.; Pang, X.; Hu, L.; Du, B.; Wei, Q. Facile fabrication of an electrochemical aptasensor based on magnetic electrode by using streptavidin modified magnetic beads for sensitive and specific detection of Hg2+. Biosens. Bioelectron. 2016, 82, 9–13. [Google Scholar] [CrossRef]
- Fu, L.; Xie, K.; Wang, A.; Lyu, F.; Ge, J.; Zhang, L.; Zhang, H.; Su, W.; Hou, Y.-L.; Zhou, C.; et al. High selective detection of mercury (II) ions by thioether side groups on metal-organic frameworks. Anal. Chim. Acta 2019, 1081, 51–58. [Google Scholar] [CrossRef]
- Butmee, P.; Mala, J.; Damphathik, C.; Kunpatee, K.; Tumcharern, G.; Kerr, M.; Mehmeti, E.; Raber, G.; Kalcher, K.; Samphao, A. A portable selective electrochemical sensor amplified with Fe3O4@Au-cysteamine-thymine acetic acid as conductive mediator for determination of mercuric ion. Talanta 2021, 221, 12. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, T.; Lin, H.; Meng, W.Q.; Zhang, C.F.; Cai, P.R.; Hao, T.T.; Wu, Y.B.; Guo, Z.Y. Disposable Faraday cage-type aptasensor for ultrasensitive determination of sub-picomolar Hg(II) via fast scan voltammetry. Sens. Actuators B-Chem. 2020, 320, 7. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Z.-N. A multifunctional label-free electrochemical impedance biosensor for Hg2+, adenosine triphosphate and thrombin. Talanta 2015, 132, 664–668. [Google Scholar] [CrossRef]
- Stanisz, E.; Werner, J.; Matusiewicz, H. Task specific ionic liquid-coated PTFE tube for solid-phase microextraction prior to chemical and photo-induced mercury cold vapour generation. Microchem. J. 2014, 114, 229–237. [Google Scholar] [CrossRef]
- Kamio, A.; Nagaosa, Y. 1-Butyl-3-methylimidazolium Hexafluorophosphate Ionic Liquid as a New Solvent for the Determination of Lead(II) and Cadmium(II) by Anodic Stripping Voltammetry after Extraction of the Iodide Complexes. Anal. Sci. 2008, 24, 1363–1367. [Google Scholar] [CrossRef] [Green Version]
- Opallo, M.; Lesniewski, A. A review on electrodes modified with ionic liquids. J. Electroanal. Chem. 2011, 656, 2–16. [Google Scholar] [CrossRef]
- Afkhami, A.; Khoshsafar, H.; Bagheri, H.; Madrakian, T. Construction of a carbon ionic liquid paste electrode based on multi-walled carbon nanotubes-synthesized Schiff base composite for trace electrochemical detection of cadmium. Mater. Sci. Eng. C 2014, 35, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, H.; Afkhami, A.; Khoshsafar, H.; Rezaei, M.; Sabounchei, S.J.; Sarlakifar, M. Simultaneous electrochemical sensing of thallium, lead and mercury using a novel ionic liquid/graphene modified electrode. Anal. Chim. Acta 2015, 870, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Papaiconomou, N.; Lee, J.M.; Salminen, J.; von Stosch, M.; Prausnitz, J.M. Selective extraction of copper, mercury, silver, and palladium ions from water using hydrophobic ionic liquids. Ind. Eng. Chem. Res. 2008, 47, 5080–5086. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.X.; Bai, H.H.; Xie, G.H.; Xiao, J.P. Temperature-controlled ionic liquid dispersive liquid phase micro-extraction. J. Chromatogr. A 2008, 1177, 43–49. [Google Scholar] [CrossRef]
- Dong, K.; Zhang, S. Hydrogen Bonds: A Structural Insight into Ionic Liquids. Chem.-A Eur. 2012, 18, 2748–2761. [Google Scholar] [CrossRef] [PubMed]
- Martinis, E.M.; Bertón, P.; Olsina, R.A.; Altamirano, J.C.; Wuilloud, R.G. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry. J. Hazard. Mater. 2009, 167, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wei, Q.; Yuan, R.; Zhou, X.; Liu, H.; Shan, H.; Song, Q. A new room temperature ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate as a solvent for extraction and preconcentration of mercury with determination by cold vapor atomic absorption spectrometry. Talanta 2007, 71, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.; Satpati, A.K.; Reddy, A.V.R. Electrodeposited Bi-Au nanocomposite modified carbon paste electrode for the simultaneous determination of copper and mercury. RSC Adv. 2015, 5, 25794–25800. [Google Scholar] [CrossRef] [Green Version]
Tap Water | Added (g/L) | AFS (g/L) | Detected (g/L) | Recovery |
---|---|---|---|---|
Tap water 1 | 0.3 | 0.31 ± 0.01 | 0.32 ± 0.02 | 106% |
Tap water 2 | 0.5 | 0.53 ± 0.01 | 0.58 ± 0.07 | 116% |
Tap water 3 | 1 | 1.09 ± 0.01 | 1.18 ± 0.08 | 118% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, C.; Hui, Y.; Wang, R.; Bian, C.; Xu, Y.; Xie, Y.; Han, M.; Xia, S. [OPy][BF4] Selective Extraction for Trace Hg2+ Detection by Electrochemistry: Enrichment, Release and Sensing. Micromachines 2021, 12, 1461. https://doi.org/10.3390/mi12121461
Xiong C, Hui Y, Wang R, Bian C, Xu Y, Xie Y, Han M, Xia S. [OPy][BF4] Selective Extraction for Trace Hg2+ Detection by Electrochemistry: Enrichment, Release and Sensing. Micromachines. 2021; 12(12):1461. https://doi.org/10.3390/mi12121461
Chicago/Turabian StyleXiong, Chenyu, Yun Hui, Ri Wang, Chao Bian, Yuhao Xu, Yong Xie, Mingjie Han, and Shanhong Xia. 2021. "[OPy][BF4] Selective Extraction for Trace Hg2+ Detection by Electrochemistry: Enrichment, Release and Sensing" Micromachines 12, no. 12: 1461. https://doi.org/10.3390/mi12121461
APA StyleXiong, C., Hui, Y., Wang, R., Bian, C., Xu, Y., Xie, Y., Han, M., & Xia, S. (2021). [OPy][BF4] Selective Extraction for Trace Hg2+ Detection by Electrochemistry: Enrichment, Release and Sensing. Micromachines, 12(12), 1461. https://doi.org/10.3390/mi12121461