Functionalized Carbon Nanotube and MnO2 Nanoflower Hybrid as an Electrode Material for Supercapacitor Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Functionalization of CNT
2.3. Synthesis of MnO2
2.4. Synthesis of FCNT-MnO2 Hybrid
2.5. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Owusu, P.A.; Sarkodie, S.A. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Thomas, I. Alternative energy technologies. Nature 2001, 414, 332. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.K.; Sy, S.; Yu, A.; Zhang, J. Electrochemical Supercapacitors for Energy Storage and Conversion, Handbook of Clean Energy Systems; John Wiley & Sons Ltd.: Hoboken, UJ, USA, 2015. [Google Scholar]
- Yu, A.; Chabot, V.; Zhang, J. Electrochemical Supercapacitors for energy storage and delivery-Fundamentals and Applications; CRC Press, Taylor & Francis Group: Abingdon-on-Thames, UK, 2013. [Google Scholar]
- Halper, M.S.; Ellenbogen, J.C. Supercapacitors: A Brief Overview; MITRE Nanosystems Group, The MITRE Corporation: McLean, VA, USA, 2006. [Google Scholar]
- Jayalakshmi, M.; Balasubramanian, K. Simple Capacitors to Supercapacitors-An Overview. Int. J. Electrochem. Sci. 2008, 3, 1196. [Google Scholar]
- Tan, W.K.; Asami, K.; Maegawa, K.; Kumar, R.; Kawamura, G.; Muto, H.; Matsuda, A. Fe3O4-embedded rGO composites as anode for rechargeable FeOx-air batteries. Mater. Today Commun. 2020, 25, 101540. [Google Scholar] [CrossRef]
- Kumar, R.; Youssry, S.M.; Soe, H.M.; Abdel-Galeil, M.M.; Kawamura, G.; Matsuda, A. Honeycomb-like open-edged reduced-graphene-oxide-enclosed transition metal oxides (NiO/Co3O4) as improved electrode materials for high-performance supercapacitor. J. Energy Storage 2020, 30, 101539. [Google Scholar] [CrossRef]
- Gupta, H.; Mothkuri, S.; Mc Glynn, R.; Carolan, D.; Maguire, P.; Mariotti, D.; Jain, P.K.; Rao, T.N.; Padmanabham, G.; Chakrabarti, S. Activated Functionalized Carbon Nanotubes and 2D Nanostructured MoS2 Hybrid Electrode Material for High-Performance Supercapacitor Applications. Phys. Status Solidi A 2020, 217, 1900855. [Google Scholar] [CrossRef] [Green Version]
- Mothkuri, S.; Gupta, H.; Jain, P.K.; Chakrabarti, S. Reduced Graphene Oxide and MnO2 Nanoflower Hybrid as an Efficient Electrode Material for Supercapacitor Application. J. Miner. Sci. Mater. 2020, 1, 1005. [Google Scholar]
- Zhang, L.L.; Zhao, X.S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520. [Google Scholar] [CrossRef]
- Frackowiak, E.; Beguin, F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001, 39, 937. [Google Scholar] [CrossRef]
- Pandolfo, A.G.; Hoolenkamp, A.F. Carbon properties and their role in supercapacitors. J. Power Sources 2006, 157, 11. [Google Scholar] [CrossRef]
- Iro, Z.S.; Subramani, C.; Dash, S.S. A Brief Review on Electrode Materials for Supercapacitor. Int. J. Electrochem. Sci. 2016, 11, 10628. [Google Scholar] [CrossRef]
- Kumar, R.; Joanni, E.; Singh, R.K.; Singh, D.P.; Moshkalev, S.A. Recent advances in the synthesis and modification of carbon-based 2D materials for application in energy conversion and storage. Prog. Energy Combust. Sci. 2018, 67, 115. [Google Scholar] [CrossRef]
- Kumar, R.; Joanni, E.; Savu, R.; Pereira, M.S.; Singh, R.K.; Constantino, C.J.L.; Kubota, L.T.; Matsuda, A.; Moshkalev, S.A. Fabrication and electrochemical evaluation of micro-supercapacitors prepared by direct laser writing on free-standing graphite oxide paper. Energy 2019, 179, 676. [Google Scholar] [CrossRef]
- Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R.K.; Yadav, R.M.; Verma, R.K.; Singh, D.P.; Tan, W.K.; del Pino, A.P.; Moshkalev, S.A.; et al. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res. 2019, 12, 2655. [Google Scholar] [CrossRef]
- Mothkuri, S.; Chakrabarti, S.; Gupta, H.; Padya, B.; Rao, T.N.; Jain, P.K. Synthesis of MnO2 nano-flakes for high performance supercapacitor application. Mater. Today Proc. 2020, 26, 142. [Google Scholar] [CrossRef]
- Youssry, S.M.; El-Hallag, I.S.; Kumar, R.; Kawamura, G.; Matsuda, A.; El-Nahass, M.N. Synthesis of mesoporous Co(OH)2 nanostructure film via electrochemical deposition using lyotropic liquid crystal template as improved electrode materials for supercapacitors application. J. Electroanal. Chem. 2020, 857, 113728. [Google Scholar] [CrossRef]
- Gupta, H.; Chakrabarti, S.; Mothkuri, S.; Padya, B.; Rao, T.N.; Jain, P.K. High performance supercapacitor based on 2D-MoS2 nanostructures. Mater. Today Proc. 2020, 26, 20. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, W.; Li, T. A review on transition metal nitrides as electrode materials for supercapacitors. Ceram. Int. 2019, 45, 21062. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Gao, S.; Du, Z.; Yuan, A.; Lu, W.; Chen, L. MnO2-Carbon nanotube composite for high-areal-density supercapacitors with high rate performance. J. Power Sources 2016, 305, 30. [Google Scholar] [CrossRef]
- Xia, H.; Wang, Y.; Lin, J.; Lu, L. Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors. Nanoscale Res. Lett. 2012, 7, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toupin, M.; Brousse, T.; Belanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 2004, 16, 84. [Google Scholar] [CrossRef]
- Kumar, N.; Prasad, K.G.; Sen, A.; Maiyalagan, T. Enhanced pseudocapacitance from finely ordered pristine α-MnO2 nanorods at favourably high current density using redox additive. Appl. Surf. Sci. 2018, 449, 492. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Li, F.; Dong, F.; Zhang, Y.X.; Zhang, L.L. MnO2-based nanostructures for high-performance supercapacitors. J. Mater. Chem. A 2015, 3, 21380. [Google Scholar] [CrossRef]
- Li, F.; Xing, Y.; Huang, M.; Li, K.L.; Yu, T.T.; Zhang, Y.X.; Losic, D. MnO2 Nanostructures with Three-dimensional (3D) Morphology Replicated from Diatoms for High-Performance Supercapacitors. J. Mater. Chem. A 2015, 3, 7855. [Google Scholar] [CrossRef]
- Rusi, M.S.R. High performance super-capacitive behaviour of deposited manganese oxide/nickel oxide binary electrode system. Electrochem. Acta 2014, 138, 1. [Google Scholar] [CrossRef]
- Hu, X.; Lin, X.; Ling, Z.; Li, Y.; Fu, X. Fabrication and Characteristics of Galvanostatic Electrodeposited MnO2 on Porous Nickel from Etched Aluminum. Electrochim. Acta 2014, 138, 132. [Google Scholar] [CrossRef]
- Ran, F.; Fan, H.; Wang, L.; Zhao, L.; Tan, Y.; Zhang, X.; Kong, L.; Kang, L. A bird nest-like manganese dioxide and its application as electrode in supercapacitors. J. Energy Chem. 2013, 22, 928. [Google Scholar] [CrossRef]
- Xu, M.; Kong, L.; Zhou, W.; Li, H. Hydrothermal Synthesis and Pseudocapacitance Properties of α-MnO2 Hollow Spheres and Hollow Urchins. J. Phys. Chem. C 2007, 111, 19141. [Google Scholar] [CrossRef]
- Brousse, T.; Toupin, M.; Dougas, R.; Athouel, L.; Crosnier, O.; Belanger, D. Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors. J. Electrochem. Soc. 2006, 153, A2171. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y. Selected-Control Hydrothermal Synthesis of α- and β-MnO2 Single Crystal Nanowires. J. Am. Chem. Soc. 2002, 124, 2880. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhu, X.; Zhang, C.; Lai, L.; Jiang, R.; Zhu, J. Controllable synthesis of different microstructured MnO2 by a facile hydrothermal method for supercapacitors. J. Alloys Compd. 2017, 692, 26. [Google Scholar] [CrossRef]
- Furtado, C.A.; Kim, U.J.; Gutierrez, H.R.; Pan, L.; Dickey, E.C.; Peter, C.E.; Am, J. Debundling and Dissolution of Single-Walled Carbon Nanotubes in Amide Solvents. Chem. Soc. 2004, 126, 6095. [Google Scholar] [CrossRef]
- Osorio, A.G.; Silveira, I.C.L.; Bueno, V.L.; Bergmann, C.P. H2SO4/HNO3/HCl—Functionalization and its effect on dispersion of carbon nanotubes in aqueous media. Appl. Surface Sci. 2008, 255, 2485. [Google Scholar] [CrossRef]
- Mallakpour, S.; Soltaniana, S. Surface functionalization of carbon nanotubes:fabrication and applications. RSC Adv. 2016, 6, 109916. [Google Scholar] [CrossRef]
- Setaro, A. Advanced Carbon Nanotubes Functionalization. J. Phys. Condens. Matter 2017, 29, 423003. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Cheng, Q.; Pavlinek, V.; Saha, P.; Li, C. Morphology-controllable synthesis of MnO2 hollow nanospheres and their supercapacitive performance. J. Chem. 2013, 37, 722. [Google Scholar] [CrossRef]
- Chen, R.; Poon, R.; Rakesh, P.S.; Ishwar, K.P.; Zhitomirsky, I. MnO2-Carbon Nanotube Electrodes for Supercapacitors with High Active Mass Loadings. J. Electrochem. Soc. 2017, 164, A1673. [Google Scholar] [CrossRef]
- Yuping, D.; Jia, Z.; Hui, J.; Shunhua, L. Morphology-controlled synthesis and novel microwave electromagnetic properties of hollow urchin-like chain Fe-doped MnO2 under 10T high magnetic field. J. Solid State Chem. 2011, 184, 1165. [Google Scholar] [CrossRef]
- Lan, L.; Li, Q.; Gu, G.; Zhang, H.; Liu, B. Hydrothermal synthesis of γ-MnOOH nanorods and their conversion to MnO2, Mn2O3, and Mn3O4 nanorods. J. Alloys Compd. 2015, 644, 430. [Google Scholar] [CrossRef]
- Li, Z.; Gu, A.; Zhou, Q. Facile Hydrothermal Synthesis of MnOOH Nanorods and Their Application. Rare Metal Mater. Eng. 2016, 45, 0863. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Geng, D.; Li, R.; Hong, H.; Chen, J.; Sun, X. One-pot synthesis of MnO2/graphene/carbon nanotube hybrid by chemical method. Carbon 2011, 49, 4434. [Google Scholar] [CrossRef]
- Kosynkin, D.V.; Higginbotham, A.L.; Sinitskii, A.; Lomeda, J.R.; Dimiev, A.; Price, B.K.; Tour, J.M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458, 872. [Google Scholar] [CrossRef] [Green Version]
- Mohan, R.; Paulose, R.; Parihar, V. Hybrid MnO2/CNT nanocomposite sheet with enhanced electrochemical performance via surfactant-free wet chemical route. Ionics 2017, 23, 3245. [Google Scholar] [CrossRef]
- Li, L.; Zhong, H.A.; An, N.; Yu, Y.Y.; Zhi, M.L.; Hong, Y.W. Facile Synthesis of MnO2/CNTs Composite for Supercapacitor Electrodes with Long Cycle Stability. J. Phys. Chem. C 2014, 118, 22865. [Google Scholar] [CrossRef]
- Ni, J.; Zhao, Y.; Liu, T.; Zheng, H.; Gao, L.; Yan, C.; Li, L. Strongly Coupled Bi2S3@CNT Hybrids for Robust Lithium Storage. Adv. Energy Mater. 2014, 4, 1400798. [Google Scholar] [CrossRef]
- Rangari, V.K.; Mohammad, G.M.; Jeelani, S.; Hundley, A.; Vig, K.; Singh, S.R.; Pillai, S. Synthesis of Ag/CNT hybrid nanoparticles and fabrication of their Nylon-6 polymer nanocomposite fibers for antimicrobial applications. Nanotechnology 2010, 21, 095102. [Google Scholar] [CrossRef]
- Sholl, C.A.; Fletcher, N.H. Decoration criteria for surface steps. Acta Metall. 1970, 18, 1083. [Google Scholar] [CrossRef]
- Thanh, N.T.K.; Maclean, N.; Mahiddine, S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chem. Rev. 2014, 114, 7610. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Lai, M.; Lu, L. Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries. J. Mater. Chem. 2010, 20, 6896. [Google Scholar] [CrossRef]
- Li, J.; Hou, Y.; Gao, X.; Guan, D.; Xie, Y.; Chen, J.; Yuan, C. A three-dimensionally interconnected carbon nanotube/layered MoS2 nanohybrid network for lithium ion battery anode with superior rate capacity and long-cycle-life. Nano Energy 2015, 16, 10. [Google Scholar] [CrossRef]
- Song, X.C.; Zheng, Y.F.; Zhao, Y.; Yin, H.Y. Hydrothermal synthesis and characterization of CNT@MoS2 nanotubes. Mater. Lett. 2006, 60, 2346. [Google Scholar] [CrossRef]
- Laheaar, A.; Przygocki, P.; Abbas, Q.; Beguin, F. Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors. Electrochem. Commun. 2015, 60, 21. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
R1 | 0.499 Ω |
C2 | 37.64 µF |
R2 | 0.4051 |
s2 | 2.182 Ω·s−0.5 |
C4 | 0.1632 F |
Rd2 | 28.71 Ω |
td2 | −0.1702 ms |
Cyclic Voltammetry | |||
---|---|---|---|
Scan Rate (mV s−1) | Specific Capacitance (F g−1) | Specific Energy (Wh kg−1) | Specific Power (W kg−1) |
5 | 359.53664 | 49.93565 | 898.84161 |
10 | 258.95669 | 35.96621 | 1294.78343 |
20 | 194.3285 | 26.99007 | 1943.28503 |
50 | 156.63005 | 21.75417 | 3915.75133 |
100 | 138.65108 | 19.25709 | 6932.55382 |
200 | 105.77257 | 14.69063 | 10,577.25698 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mothkuri, S.; Gupta, H.; Jain, P.K.; Rao, T.N.; Padmanabham, G.; Chakrabarti, S. Functionalized Carbon Nanotube and MnO2 Nanoflower Hybrid as an Electrode Material for Supercapacitor Application. Micromachines 2021, 12, 213. https://doi.org/10.3390/mi12020213
Mothkuri S, Gupta H, Jain PK, Rao TN, Padmanabham G, Chakrabarti S. Functionalized Carbon Nanotube and MnO2 Nanoflower Hybrid as an Electrode Material for Supercapacitor Application. Micromachines. 2021; 12(2):213. https://doi.org/10.3390/mi12020213
Chicago/Turabian StyleMothkuri, Sagar, Honey Gupta, Pawan K. Jain, Tata Narsinga Rao, Gade Padmanabham, and Supriya Chakrabarti. 2021. "Functionalized Carbon Nanotube and MnO2 Nanoflower Hybrid as an Electrode Material for Supercapacitor Application" Micromachines 12, no. 2: 213. https://doi.org/10.3390/mi12020213
APA StyleMothkuri, S., Gupta, H., Jain, P. K., Rao, T. N., Padmanabham, G., & Chakrabarti, S. (2021). Functionalized Carbon Nanotube and MnO2 Nanoflower Hybrid as an Electrode Material for Supercapacitor Application. Micromachines, 12(2), 213. https://doi.org/10.3390/mi12020213