Hollow-Core Fiber-Tip Interferometric High-Temperature Sensor Operating at 1100 °C with High Linearity
Abstract
:1. Introduction
2. Sensor Fabrication and Working Principle
3. High-Temperature Properties of the Proposed Sensor
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Solntsev, S.; Grashchenkov, D.; Evdokimov, S. Promising High-Temperature Composite Materials and Coatings for Aerospace Technology. GLASS CERAM+ 2014, 71, 23–27. [Google Scholar] [CrossRef]
- Skinner, N.; Maida, J., Jr. Downhole fiber optic sensing: The oilfield service provider’s perspective: From the cradle to the grave. Proc. SPIE 9098 Fiber Opt. Sens. Appl. XI 2014, 9098, 909804. [Google Scholar]
- Smelser, C.; Mihailov, S.; Grobnic, D. Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask. Opt. Express 2005, 13, 5377–5386. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Qiao, X.; Das, S.; Paul, M. Thermal regenerated grating operation at temperatures up to 1400 °C using new class of multimaterial glass-based photosensitive fiber. Opt. Lett. 2014, 39, 6438–6441. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; He, J.; Liao, C.; Yang, K.; Guo, K.; Li, C.; Zhang, Y.; Ouyang, Z.; Wang, Y. Sapphire fiber Bragg gratings inscribed with a femtosecond laser line-by-line scanning technique. Opt. Lett. 2018, 43, 4562–4565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Shum, P.; Bay, H.-W.; Yan, M.; Yu, X.; Hu, J.; Hao, J.; Lu, C. Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber. Opt. Lett. 2005, 30, 367–369. [Google Scholar] [CrossRef] [PubMed]
- Rego, G.; Okhotnikov, O.; Dianov, E.; Sulimov, V. High-temperature stability of long-period fiber gratings produced using an electric arc. J. Lightwave Technol. 2001, 19, 1574–1579. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Liao, C.; Wang, D.; Yang, M.; Lu, P. High-temperature sensing using miniaturized fiber in-line Mach–Zehnder interferometer. IEEE Photonics Technol. Lett. 2009, 22, 39–41. [Google Scholar] [CrossRef]
- Nguyen, L.; Hwang, D.; Moon, S.; Moon, D.; Chung, Y. High temperature fiber sensor with high sensitivity based on core diameter mismatch. Opt. Express 2008, 16, 11369–11375. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Park, K.; Park, S.; Paek, U.; Lee, B.; Choi, E. Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry–Perot interferometer. Opt. Lett. 2008, 33, 2455–2457. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Shu, X. Refractive-index-modified-dot Fabry-Perot fiber probe fabricated by femtosecond laser for high-temperature sensing. Opt. Express 2018, 26, 5292–5299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Liao, C.; Wang, D.; Sun, T.; Grattan, K. Study of spectral and annealing properties of fiber bragg gratings written in h2-free and h2-loaded fibers by use of femtosecond laser pulses. Opt. Express 2008, 16, 21239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grobnic, D.; Smelser, C.; Mihailov, S.; Walker, R. Long-term thermal stability tests at 1000 °C of silica fibre bragg gratings made with ultrafast laser radiation. Meas. Sci. Technol. 2006, 17, 1009–1013. [Google Scholar] [CrossRef]
- Paek, U.; Kurkjian, C. Calculation of cooling rate and induced stresses in drawing of optical fibers. J. Am. Ceram. Soc. 1975, 58, 330–335. [Google Scholar] [CrossRef]
- Wissuchek, D.; Ponader, C.; Price, J. Analysis of residual stress in optical fiber. Proc. SPIE 1999, 3848, 34–43. [Google Scholar]
- Li, Y.; Yang, M.; Wang, D.; Lu, J.; Sun, T.; Grattan, K. Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation. Opt. Express 2008, 17, 19785–19790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cregan, R.; Mangan, B.; Knight, J. Single-mode photonic band gap guidance of light in air. Science 1999, 285, 1537–1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, M.; Coelho, L.; Schuster, K.; Kobelke, J.; Santos, L.; Frazão, O. Fabry-Perot cavity based on a diaphragm-free hollow-core silica tube. Opt. Lett. 2011, 36, 4029–4031. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liao, C.; Tang, J.; Wang, Y.; Bai, Z.; Li, Z.; Guo, K.; Deng, M.; Cao, S.; Wang, Y. Hollow-Core-Fiber-Based Interferometer for High-Temperature Measurements. IEEE Photonics J. 2017, 9, 7101109. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Xu, B.; Zhou, M.; Bao, W.; Xu, X.; Wang, Y.; He, J.; Wang, Y. Hollow-Core Fiber-Tip Interferometric High-Temperature Sensor Operating at 1100 °C with High Linearity. Micromachines 2021, 12, 234. https://doi.org/10.3390/mi12030234
Zhang Z, Xu B, Zhou M, Bao W, Xu X, Wang Y, He J, Wang Y. Hollow-Core Fiber-Tip Interferometric High-Temperature Sensor Operating at 1100 °C with High Linearity. Micromachines. 2021; 12(3):234. https://doi.org/10.3390/mi12030234
Chicago/Turabian StyleZhang, Zhe, Baijie Xu, Min Zhou, Weijia Bao, Xizhen Xu, Ying Wang, Jun He, and Yiping Wang. 2021. "Hollow-Core Fiber-Tip Interferometric High-Temperature Sensor Operating at 1100 °C with High Linearity" Micromachines 12, no. 3: 234. https://doi.org/10.3390/mi12030234
APA StyleZhang, Z., Xu, B., Zhou, M., Bao, W., Xu, X., Wang, Y., He, J., & Wang, Y. (2021). Hollow-Core Fiber-Tip Interferometric High-Temperature Sensor Operating at 1100 °C with High Linearity. Micromachines, 12(3), 234. https://doi.org/10.3390/mi12030234