A Study on the Effect of Flow Unsteadiness on the Yield of a Chemical Reaction in a T Micro-Reactor
Abstract
:1. Introduction
2. Experimental Setup
3. Numerical Setup
- the Reynolds number
- the Richardson number
- the Peclet number
4. Results
- in the segregated regime (see solid line)
- in the vortex and engulfment regimes (dashed line).
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
density difference between the two inlet fluids, kg m | |
degree of mixing, - | |
image exposure time, s | |
reaction yield, - | |
non-dimensional time, - | |
dynamic viscosity, kg m s | |
non-dimensional kinematic viscosity, - | |
dynamic viscosity of pure water at 20 °C, kg m s | |
kinematic viscosity of pure water at 20 °C, m s | |
density, kg m | |
non-dimensional density, - | |
density of pure water at 20 °C, kg m | |
standard deviation of the volumetric dye flow, - | |
maximum value of the standard deviation of the volumetric dye flow, - | |
cycle period, s | |
mass fraction of the k-th chemical species, - | |
rate of production or consumption of due to chemical reactions, kg m s | |
ascorbic acid | |
methylene blue concentration, mol m | |
CFL | Courant–Friedrichs–Lewy number, - |
d | mixing channel hydraulic diameter, m |
diffusivity, m s | |
non-dimensional diffusivity, - | |
water self-diffusivity, m s | |
Damköhler number, - | |
dehydroascorbic acid | |
g | gravity acceleration, m s |
non-dimensional gravity, - | |
H | channel height, m |
hydrogen chloride | |
kinetic constant, s | |
non-dimensional kinetic constant, - | |
inlet channel length, m | |
leuco compound | |
mixing channel length, m | |
methylene blue | |
N.A. | numeric aperture, - |
p | modified non-dimensional pressure, - |
P | pressure, Pa |
Peclet number, - | |
PISO | Pressure implicit with splitting of operator algorithm |
Reynolds number, - | |
Richardson number, - | |
Strouhal number, - | |
t | time, s |
U | bulk velocity, m s |
velocity vector, m s | |
inlet channels width, m | |
mixing channel width, m | |
x | x-coordinate, m |
X | non-dimensional x-coordinate, - |
y | y-coordinate, m |
Y | non-dimensional y-coordinate, - |
z | z-coordinate, m |
Z | non-dimensional z-coordinate, - |
References
- Rossetti, I.; Compagnoni, M. Chemical reaction engineering, process design and scale-up issues at the frontier of synthesis: Flow chemistry. Chem. Eng. J. 2016, 296, 56–70. [Google Scholar] [CrossRef]
- Roberge, D.M.; Ducry, L.; Bieler, N.; Cretton, P.; Zimmermann, B. Microreactor technology: A revolution for the fine chemical and pharmaceutical industries? Chem. Eng. Technol. 2005, 28, 318–323. [Google Scholar] [CrossRef]
- Pommella, A.; Tomaiuolo, G.; Chartoire, A.; Caserta, S.; Toscano, G.; Nolan, S.P.; Guido, S. Palladium-N-heterocyclic carbene (NHC) catalyzed C–N bond formation in a continuous flow microreactor. Effect of process parameters and comparison with batch operation. Chem. Eng. J. 2013, 223, 578–583. [Google Scholar] [CrossRef]
- Rossetti, I. Continuous flow (micro-)reactors for heterogeneously catalyzed reactions: Main design and modelling issues. Catal. Today 2018, 308, 20–31. [Google Scholar] [CrossRef]
- Russo, D.; Tomaiuolo, G.; Andreozzi, R.; Guido, S.; Lapkin, A.A.; Di Somma, I. Heterogeneous benzaldehyde nitration in batch and continuous flow microreactor. Chem. Eng. J. 2019, 377, 120346. [Google Scholar] [CrossRef]
- Gani, R.; Bałdyga, J.; Biscans, B.; Brunazzi, E.; Charpentier, J.C.; Drioli, E.; Feise, H.; Furlong, A.; Van Geem, K.M.; de Hemptinne, J.C.; et al. A multi-layered view of chemical and biochemical engineering. Chem. Eng. Res. Des. 2020, 155, A133–A145. [Google Scholar] [CrossRef]
- Lee, S.H.; Kang, P.K. Three-Dimensional Vortex-Induced Reaction Hot Spots at Flow Intersections. Phys. Rev. Lett. 2020, 124, 144501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, S.H.; Ward, M.C.; Wharton, C.W. Micro T-mixer as a rapid mixing micromixer. Sens. Actuators B Chem. 2004, 100, 359–379. [Google Scholar] [CrossRef]
- Dreher, S.; Kockmann, N.; Woias, P. Characterization of laminar transient flow regimes and mixing in T-shaped micromixers. Heat Transf. Eng. 2009, 30, 91–100. [Google Scholar] [CrossRef]
- Galletti, C.; Brunazzi, E.; Mauri, R. Unsteady mixing of binary liquid mixtures with composition-dependent viscosity. Chem. Eng. Sci. 2017, 164, 333–343. [Google Scholar] [CrossRef]
- Minakov, A.; Rudyak, V.; Gavrilov, A.; Dekterev, A. Mixing in a T-shaped micromixer at moderate Reynolds numbers. Thermophys. Aeromech. 2012, 19, 385–395. [Google Scholar] [CrossRef]
- Kockmann, N.; Kiefer, T.; Engler, M.; Woias, P. Convective mixing and chemical reactions in microchannels with high flow rates. Sens. Actuators B Chem. 2006, 117, 495–508. [Google Scholar] [CrossRef]
- Fani, A.; Camarri, S.; Salvetti, M.V. Investigation of the steady engulfment regime in a three-dimensional T-mixer. Phys. Fluids 2013, 25, 064102. [Google Scholar] [CrossRef] [Green Version]
- Poole, R.J.; Alfateh, M.; Gauntlett, A.P. Bifurcation in a T-channel junction: Effects of aspect ratio and shear-thinning. Chem. Eng. Sci. 2013, 104, 839–848. [Google Scholar] [CrossRef]
- Lobasov, A.S.; Minakov, A.V.; Kuznetsov, V.V.; Rudyak, V.Y.; Shebeleva, A.A. Investigation of mixing efficiency and pressure drop in T-shaped micromixers. Chem. Eng. Process. Process Intensif. 2018, 134, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Mariotti, A.; Lanzetta, M.; Dini, G.; Rossi, A.; Brunazzi, E.; Mauri, R.; Galletti, C. Influence of cross-sectional geometry on mixing in a T-shaped micro-junction. Chem. Eng. Trans. 2019, 74, 955–960. [Google Scholar]
- Mariotti, A.; Galletti, C.; Brunazzi, E.; Salvetti, M.V. Steady flow regimes and mixing performance in arrow-shaped micro-mixers. Phys. Rev. Fluids 2019, 4, 034201. [Google Scholar] [CrossRef]
- Mariotti, A.; Galletti, C.; Brunazzi, E.; Salvetti, M.V. Unsteady flow regimes in arrow-shaped micro-mixers with different tilting angles. Phys. Fluids 2021, 33, 012008. [Google Scholar] [CrossRef]
- You, B.J.; Choi, Y.; Im, S.G. Influence of adjusting the inlet channel confluence angle on mixing behaviour in inertial microfluidic mixers. Microfluid. Nanofluid. 2017, 21, 121. [Google Scholar] [CrossRef]
- Babu, H.; Satu, S.; Haderlein, M.; Peukert, W.; Verma, N. Numerical investigation of flow patterns and concentration profiles in Y-mixers. Chem. Eng. Technol. 2016, 39, 1963. [Google Scholar] [CrossRef]
- Ansari, M.A.; Kim, K.Y.; Kim, S.M. Numerical and Experimental Study on Mixing Performances of Simple and Vortex Micro T-Mixers. Micromachines 2018, 9, 204. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.T.; Ault, J.T.; Haward, S.J.; Meiburg, E.; Shen, A.Q. Coupling of vortex breakdown and stability in a swirling flow. Phys. Rev. Fluids 2019, 4, 084701. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Lu, Y.; Wang, J.; Luo, G. Mixing characterization and scaling-up analysis of asymmetrical T-shaped micromixer: Experiment and CFD simulation. Chem. Eng. J. 2012, 181–182, 597–606. [Google Scholar] [CrossRef]
- Wu, C.; Lai, B. Numerical study of T-shaped micromixers with vortex-inducing obstacles in the inlet channels. Micromachines 2020, 11, 1122. [Google Scholar] [CrossRef]
- Lobasov, A.S.; Minakov, A.V. Analyzing mixing quality in a T-shaped micromixer for different fluids properties through numerical simulation. Chem. Eng. Process. Process Intensif. 2018, 124, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Galletti, C.; Arcolini, G.; Brunazzi, E.; Mauri, R. Mixing of binary fluids with composition-dependent viscosity in a T-shaped micro-device. Chem. Eng. Sci. 2015, 123, 300–310. [Google Scholar] [CrossRef] [Green Version]
- Orsi, G.; Roudgar, M.; Brunazzi, E.; Galletti, C.; Mauri, R. Water-ethanol mixing in T-shaped microdevices. Chem. Eng. Sci. 2013, 95, 174–183. [Google Scholar] [CrossRef]
- Galletti, C.; Roudgar, M.; Brunazzi, E.; Mauri, R. Effect of inlet conditions on the engulfment pattern in a T-shaped micro-mixer. Chem. Eng. J. 2012, 185-186, 300–313. [Google Scholar] [CrossRef]
- Dundi, T.M.; Raju, V.R.K.; Chandramohan, V.P. Numerical evaluation of swirl effect on liquid mixing in a passive T-micromixer. Aust. J. Mech. Eng. 2019, 0, 1–15. [Google Scholar] [CrossRef]
- Soleymani, A.; Yousefi, H.; Turunen, I. Dimensionless number for identification of flow patterns inside a T-micromixer. Chem. Eng. Sci. 2008, 63, 5291–5297. [Google Scholar] [CrossRef]
- Camarri, S.; Mariotti, A.; Galletti, C.; Brunazzi, E.; Mauri, R.; Salvetti, M.V. An Overview of Flow Features and Mixing in Micro T and Arrow Mixers. Ind. Eng. Chem. Res. 2020, 59, 3669–3686. [Google Scholar] [CrossRef]
- Mariotti, A.; Antognoli, M.; Galletti, C.; Mauri, R.; Salvetti, M.V.; Brunazzi, E. The role of flow features and chemical kinetics on the reaction yield in a T-shaped micro-reactor. Chem. Eng. J. 2020, 396, 125223. [Google Scholar] [CrossRef]
- Mariotti, A.; Galletti, C.; Mauri, R.; Salvetti, M.V.; Brunazzi, E. Effect of stratification on the mixing and reaction yield in a T-shaped micro-mixer. Phys. Rev. Fluids 2021, 004200, 1–29. [Google Scholar]
- Mowry, S.; Ogren, P.J. Kinetics of Methylene Blue Reduction by Ascorbic Acid. J. Chem. Educ. 1999, 76, 970–973. [Google Scholar] [CrossRef]
- Mariotti, A.; Galletti, C.; Mauri, R.; Salvetti, M.V.; Brunazzi, E. Steady and unsteady regimes in a T-shaped micro-mixer: Synergic experimental and numerical investigation. Chem. Eng. J. 2018, 341, 414–431. [Google Scholar] [CrossRef]
- Nishikata, E.; Ishii, T.; Ohta, T. Viscosities of aqueous hydrochloric acid solutions, and densities and viscosities of aqueous hydroiodic acid solutions. J. Chem. Eng. Data 1981, 26, 254–256. [Google Scholar] [CrossRef]
- ANSYS Inc. ANSYS Fluent Theory Guide, 2019R2; ANSYS Inc.: Canonsburg, PA, USA, 2019. [Google Scholar]
- Galletti, C.; Mariotti, A.; Siconolfi, L.; Mauri, R.; Brunazzi, E. Numerical investigation of flow regimes in T-shaped micromixers: Benchmark between finite volume and spectral element methods. Can. J. Chem. Eng. 2019, 97, 528–541. [Google Scholar] [CrossRef]
- Mariotti, A.; Galletti, C.; Salvetti, M.V.; Brunazzi, E. Unsteady Flow Regimes in a T-Shaped Micromixer: Mixing and Characteristic Frequencies. Ind. Eng. Chem. Res. 2019, 58, 13340–13356. [Google Scholar] [CrossRef]
Re | ||
---|---|---|
320 | ||
650 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariotti, A.; Antognoli, M.; Galletti, C.; Mauri, R.; Salvetti, M.V.; Brunazzi, E. A Study on the Effect of Flow Unsteadiness on the Yield of a Chemical Reaction in a T Micro-Reactor. Micromachines 2021, 12, 242. https://doi.org/10.3390/mi12030242
Mariotti A, Antognoli M, Galletti C, Mauri R, Salvetti MV, Brunazzi E. A Study on the Effect of Flow Unsteadiness on the Yield of a Chemical Reaction in a T Micro-Reactor. Micromachines. 2021; 12(3):242. https://doi.org/10.3390/mi12030242
Chicago/Turabian StyleMariotti, Alessandro, Matteo Antognoli, Chiara Galletti, Roberto Mauri, Maria Vittoria Salvetti, and Elisabetta Brunazzi. 2021. "A Study on the Effect of Flow Unsteadiness on the Yield of a Chemical Reaction in a T Micro-Reactor" Micromachines 12, no. 3: 242. https://doi.org/10.3390/mi12030242
APA StyleMariotti, A., Antognoli, M., Galletti, C., Mauri, R., Salvetti, M. V., & Brunazzi, E. (2021). A Study on the Effect of Flow Unsteadiness on the Yield of a Chemical Reaction in a T Micro-Reactor. Micromachines, 12(3), 242. https://doi.org/10.3390/mi12030242