A Non-Volatile Tunable Terahertz Metamaterial Absorber Using Graphene Floating Gate
Abstract
:1. Introduction
2. Structure and Design
3. Results and Discussion
3.1. Simulation Results and Mechanism Analysis
3.2. Frequency Tunability and Insensitivity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Theofanopoulos, P.C.; Sakr, M.; Trichopoulos, G.C. Multistatic Terahertz Imaging Using the Radon Transform. IEEE Trans. Antennas Propag. 2019, 67, 2700–2709. [Google Scholar] [CrossRef]
- Nagatsuma, T.; Ducournau, G.; Renaud, C.C. Advances in terahertz communications accelerated by photonics. Nat. Photonics 2016, 10, 371–379. [Google Scholar] [CrossRef]
- Jia, S.; Pang, X.D.; Ozolins, O.; Yu, X.B.; Hu, H.; Yu, J.L.; Guan, P.Y.; Da Ros, F.; Popov, S.; Jacobsen, G.; et al. 0.4 THz Photonic-Wireless Link With 106 Gb/s Single Channel Bitrate. J. Lightwave Technol. 2018, 36, 610–616. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zhao, X.; Yang, K.; Liu, Y.P.; Liu, Y.; Fu, W.L.; Luo, Y. Biomedical Applications of Terahertz Spectroscopy and Imaging. Trends Biotechnol. 2016, 34, 810–824. [Google Scholar] [CrossRef]
- Shi, J.; Wang, Y.Y.; Chen, T.N.; Xu, D.G.; Zhao, H.L.; Chen, L.Y.; Yan, C.; Tang, L.H.; He, Y.X.; Feng, H.; et al. Automatic evaluation of traumatic brain injury based on terahertz imaging with machine learning. Opt. Express 2018, 26, 6371–6381. [Google Scholar] [CrossRef]
- Tao, H.; Landy, N.I.; Bingham, C.M.; Zhang, X.; Averitt, R.D.; Padilla, W.J. A metamaterial absorber for the terahertz regime: Design, fabrication and characterization. Opt. Express 2008, 16, 7181–7188. [Google Scholar] [CrossRef] [PubMed]
- Alves, F.; Kearney, B.; Grbovic, D.; Lavrik, N.V.; Karunasiri, G. Strong terahertz absorption using SiO2/Al based metamaterial structures. Appl. Phys. Lett. 2012, 100, 111104. [Google Scholar] [CrossRef]
- Li, J.S. High absorption terahertz-wave absorber consisting of dual-C metamaterial structure. Microw. Opt. Technol. Lett. 2013, 55, 1185–1189. [Google Scholar] [CrossRef]
- Wen, Q.Y.; Zhang, H.W.; Xie, Y.S.; Yang, Q.H.; Liu, Y.L. Dual band terahertz metamaterial absorber: Design, fabrication, and characterization. Appl. Phys. Lett. 2009, 95, 241111. [Google Scholar] [CrossRef]
- Wang, B.X.; Zhai, X.; Wang, G.Z.; Huang, W.Q.; Wang, L.L. Design of a Four-Band and Polarization-Insensitive Terahertz Metamaterial Absorber. IEEE Photonics J. 2015, 7, 1–8. [Google Scholar] [CrossRef]
- Shen, X.P.; Yang, Y.; Zang, Y.Z.; Gu, J.Q.; Han, J.G.; Zhang, W.L.; Cui, T.J. Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation. Appl. Phys. Lett. 2012, 101, 151402. [Google Scholar] [CrossRef]
- Mao, Z.W.; Liu, S.B.; Bian, B.R.; Wang, B.Y.; Ma, B.; Chen, L.; Xu, J.Y. Multi-band polarization-insensitive metamaterial absorber based on Chinese ancient coin-shaped structures. J. Appl. Phys. 2014, 115, 1–8. [Google Scholar] [CrossRef]
- Zhu, J.F.; Ma, Z.F.; Sun, W.J.; Ding, F.; He, Q.; Zhou, L.; Ma, Y.G. Ultra-broadband terahertz metamaterial absorber. Appl. Phys. Lett. 2014, 105, 021102. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.T.; Wu, B.A.; Huang, B.J.; Cheng, Q.A. Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface. Opt. Express 2017, 25, 7161–7169. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Chowdhury, D.R.; Ramani, S.; Reiten, M.T.; Luo, S.N.; Taylor, A.J.; Chen, H.T. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band. Opt. Lett. 2012, 37, 154–156. [Google Scholar] [CrossRef] [Green Version]
- Ghadiri, M.; Kang, A.K.; Gorji, N.E. XRD characterization of graphene-contacted perovskite solar cells: Moisture degradation and dark-resting recovery. Superlattices Microstruct. 2020, 146, 106677. [Google Scholar] [CrossRef]
- Bai, J.J.; Zhang, S.S.; Fan, F.; Wang, S.S.; Sun, X.D.; Miao, Y.P.; Chang, S.J. Tunable broadband THz absorber using vanadium dioxide metamaterials. Opt. Commun. 2019, 452, 292–295. [Google Scholar] [CrossRef]
- Song, Z.Y.; Wang, K.; Li, J.W.; Liu, Q.H. Broadband tunable terahertz absorber based on vanadium dioxide metamaterials. Opt. Express 2018, 26, 7148–7154. [Google Scholar] [CrossRef]
- Zhu, J.; Han, J.; Tian, Z.; Gu, J.; Chen, Z.; Zhang, W. Thermal broadband tunable Terahertz metamaterials. Opt. Commun. 2011, 284, 3129–3133. [Google Scholar] [CrossRef]
- Luo, C.Y.; Li, D.; Yao, J.Q.; Ling, F.R. Direct thermal tuning of the terahertz plasmonic response of semiconductor metasurface. J. Electromagn. Waves Appl. 2015, 29, 2512–2522. [Google Scholar] [CrossRef]
- Yuan, H.; Zhu, B.O.; Feng, Y. A frequency and bandwidth tunable metamaterial absorber in x-band. J. Appl. Phys. 2015, 117, 173103. [Google Scholar] [CrossRef]
- Zhao, J.; Cheng, Q.; Chen, J.; Qi, M.Q.; Jiang, W.X.; Cui, T.J. A tunable metamaterial absorber using varactor diodes. New J. Phys. 2013, 15, 043049. [Google Scholar] [CrossRef]
- Peng, J.; He, X.; Shi, C.; Leng, J.; Lin, F.; Liu, F.; Zhang, H.; Shi, W. Investigation of graphene supported terahertz elliptical metamaterials. Phys. E-Low-Dimens. Syst. Nanostruct. 2020, 124, 114309. [Google Scholar] [CrossRef]
- He, X.Y.; Lin, F.T.; Liu, F.; Shi, W.Z. Tunable strontium titanate terahertz all-dielectric metamaterials. J.Phys. D-Appl. Phys. 2020, 53, 155105. [Google Scholar] [CrossRef]
- He, X.; Lin, F.; Liu, F.; Zhang, H. Investigation of Phonon Scattering on the Tunable Mechanisms of Terahertz Graphene Metamaterials. Nanomaterials 2020, 10, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.Z.; Gong, R.Z.; Cheng, Z.Z. A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves. Opt. Commun. 2016, 361, 41–46. [Google Scholar] [CrossRef]
- Shen, X.P.; Cui, T.J. Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber. J. Opt. 2012, 14, 114012. [Google Scholar] [CrossRef]
- Hu, F.R.; Qian, Y.X.; Li, Z.; Niu, J.H.; Nie, K.; Xiong, X.M.; Zhang, W.T.; Peng, Z.Y. Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array. J. Opt. 2013, 15, 055101. [Google Scholar] [CrossRef]
- Chen, M.; Sun, W.; Cai, J.; Chang, L.; Xiao, X. Frequency-tunable terahertz absorbers based on graphene metasurface. Opt. Commun. 2017, 382, 144–150. [Google Scholar] [CrossRef]
- Wang, L.; Ge, S.; Hu, W.; Nakajima, M.; Lu, Y. Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber. Opt. Express 2017, 25, 23873–23879. [Google Scholar] [CrossRef]
- Wang, Y.; Song, M.; Pu, M.; Gu, Y.; Hu, C.; Zhao, Z.; Wang, C.; Yu, H.; Luo, X. Staked Graphene for Tunable Terahertz Absorber with Customized Bandwidth. Plasmonics 2016, 11, 1201–1206. [Google Scholar] [CrossRef]
- Yao, G.; Ling, F.; Yue, J.; Luo, C.; Ji, J.; Yao, J. Dual-band tunable perfect metamaterial absorber in the THz range. Opt. Express 2016, 24, 1518–1527. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, Q.; Yan, S.; Wu, F.; He, X.; Jiang, J. Tunable terahertz absorption in graphene-based metamaterial. Opt. Commun. 2015, 353, 70–75. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, Y.; Zhu, B.; Zhao, J.; Jiang, T. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. Opt. Express 2014, 22, 22743–22752. [Google Scholar] [CrossRef] [PubMed]
- Andryieuski, A.; Lavrinenko, A.V. Graphene metamaterials based tunable terahertz absorber: Effective surface conductivity approach. Opt. Express 2013, 21, 9144–9155. [Google Scholar] [CrossRef] [Green Version]
- Torabi, E.S.; Fallahi, A.; Yahaghi, A. Evolutionary Optimization of Graphene-Metal Metasurfaces for Tunable Broadband Terahertz Absorption. IEEE Trans. Antennas Propag. 2017, 65, 1464–1467. [Google Scholar] [CrossRef] [Green Version]
- Xiao, B.; Gu, M.; Xiao, S. Broadband, wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays. Appl. Opt. 2017, 56, 5458–5462. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.Q.; Jin, Y.; He, S. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. J. Opt. Soc. Am. B-Opt. Phys. 2010, 27, 498–504. [Google Scholar] [CrossRef]
- Ma, M.S.; Wang, Y.; Navarro-Cia, M.; Liu, F.; Zhang, F.Q.; Li, Z.F.; Li, Y.X.; Hanham, S.M.; Hao, Z.C. The dielectric properties of some ceramic substrate materials at terahertz frequencies. J. Eur. Ceram. Soc. 2019, 39, 4424–4428. [Google Scholar] [CrossRef]
- Du, X.; Yan, F.; Wang, W.; Tan, S.; Zhang, L.; Bai, Z.; Zhou, H.; Hou, Y. A polarization- and angle-insensitive broadband tunable metamaterial absorber using patterned graphene resonators in the terahertz band. Opt. Laser Technol. 2020, 132. [Google Scholar] [CrossRef]
- Peng, X.L.; Hao, R.; Chen, W.C.; Chen, H.S.; Yin, W.Y.; Li, E.P. An Active Absorber Based on Nonvolatile Floating-Gate Graphene Structure. IEEE Trans. Nanotechnol. 2017, 16, 189–195. [Google Scholar] [CrossRef]
- Shen, N.-H.; Tassin, P.; Koschny, T.; Soukoulis, C.M. Comparison of gold- and graphene-based resonant nanostructures for terahertz metamaterials and an ultrathin graphene-based modulator. Phys. Rev. B 2014, 90, 115437. [Google Scholar] [CrossRef] [Green Version]
- Sorianello, V.; Midrio, M.; Romagnoli, M. Design optimization of single and double layer Graphene phase modulators in SOI. Opt. Express 2015, 23, 6478–6490. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, J.; Shen, W.; Shi, J.; Xu, W.; Zhang, S.; Chang, S. A Non-Volatile Tunable Terahertz Metamaterial Absorber Using Graphene Floating Gate. Micromachines 2021, 12, 333. https://doi.org/10.3390/mi12030333
Bai J, Shen W, Shi J, Xu W, Zhang S, Chang S. A Non-Volatile Tunable Terahertz Metamaterial Absorber Using Graphene Floating Gate. Micromachines. 2021; 12(3):333. https://doi.org/10.3390/mi12030333
Chicago/Turabian StyleBai, Jinjun, Wei Shen, Jia Shi, Wei Xu, Shusheng Zhang, and Shengjiang Chang. 2021. "A Non-Volatile Tunable Terahertz Metamaterial Absorber Using Graphene Floating Gate" Micromachines 12, no. 3: 333. https://doi.org/10.3390/mi12030333
APA StyleBai, J., Shen, W., Shi, J., Xu, W., Zhang, S., & Chang, S. (2021). A Non-Volatile Tunable Terahertz Metamaterial Absorber Using Graphene Floating Gate. Micromachines, 12(3), 333. https://doi.org/10.3390/mi12030333