Microneedles: A New Generation Vaccine Delivery System
Abstract
:1. Introduction
2. Vaccine Formulations and Their Delivery Methods
3. Mucosal Route
3.1. Nasal Route
3.2. Oral Route
3.3. Buccal and Sublingual Route
3.4. Rectal Route
3.5. Vaginal Route
4. Parenteral Route:
4.1. Intramuscular Route
4.2. Subcutaneous Route
4.3. Intravenous Route
4.4. Intradermal Route
5. Microneedles for Transdermal Delivery
5.1. Solid Microneedles
5.2. Hollow Microneedles
5.3. Dissolving Microneedles
5.4. Coated Microneedles
6. Composition of Microneedles
7. Vaccination Using Microneedles
7.1. Solid Microneedles for Vaccine Delivery
7.2. Hollow Microneedles for Vaccine Delivery
7.3. Dissolving Microneedles for Vaccine Delivery
8. The Barriers to Microneedles-Based Vaccines
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. PRISMA Forms for This Narrative Review
Protocol and registration: NA |
Eligibility criteria: All published studies with mesh terms: microneedle, skin patch, and vaccine delivery |
Information sources: NCBI and Web of Science |
Search: https://pubmed.ncbi.nlm.nih.gov/?term=Microneedle+and+vaccine+delivery&sort=date&size=200 https://mjl.clarivate.com/search-results; Accessed date: 13 November 2020, updated on 18 February 2021 |
Study selection: Narrative review of current literature. |
Data collection process: PubMed and Web of Science. First search yielded around 400 papers that were reviewed carefully for inclusion in this narrative review |
Data items: 400 papers went through selection for suitability and inclusion in this narrative synthesis |
Data collection process: PubMed and Web of Science. First search yielded around 400 papers that were reviewed carefully for inclusion in this narrative review. Additional search included websites of companies with microneedles R & D |
Risk of bias in individual studies: NA. Only two clinical trials we available at the time of this study NCT02438423 and NCT03207763. Summary measures: Published paper describing the principles of vaccine delivery routes were included with special focus on studies describing microneedles fabrication, utility and challenges are included |
Synthesis of results: The utility of microneedles for vaccine delivery was the basis for this narrative review. This thematic review discusses the current microneedles skin patches state of the art and the potential translation for vaccine delivery |
Appendix A.2. PRISMA for Clinical Trials Using Microneedles
Protocol and registration: NCT02438423 |
Eligibility criteria: 18 Years to 49 Years healthy adults |
Information sources: Clinical Trials.gov |
Search: https://clinicaltrials.gov/ct2/show/study/NCT02438423; Accessed date: 13 November 2020 |
Study selection: Interventional, Randomized, Phase I Placebo controlled Study of The Safety, Reactogenicity, Acceptability and Immunogenicity of Inactivated Influenza Vaccine Delivered either by Microneedle Patch or by Hypodermic Needle. |
Data collection process: This is a single center, partially blinded, randomized phase I study in which healthy adult subjects (ages 18–49) will receive either inactivated influenza vaccine (IIV) (either by microneedle patch or hypodermic needle) or placebo (by microneedle patch) (https://clinicaltrials.gov/ct2/show/study/NCT02438423; Accessed date: 13 November 2020) |
Data items: 100 participants recruited and allocated to the following interventional groups: 25 participants in Inactivated Influenza Vaccine (IIV) Delivered by Microneedle (MN) Patch by Study Staff 25 participants in IIV Delivered IM by Study Staff 25 participants in IIV Delivered by MN Patch by Subject 25 participants in Placebo MN Patch by Study Staff |
Risk of bias in individual studies: NA, single blinded study includes equal number of males and females |
Summary measures: Primary out comes: Occurrence of Solicited Injection Site and Systemic Reactogenicity on the Day of Study Product Administration Through 7 Days After Administration. And Occurrence of Study Product-related Serious Adverse Events From D0 Until D180 (+/− 14 Days) After Study Product Administration Secondary outcome: Geometric Mean Titer (GMT) of HAI Antibody Approximately 28 Days Following Receipt of IIV Delivered by Microneedle Patch or by Hypodermic Needle (Both Vaccines Administered by Study Staff). And Percentage of Subjects Achieving Seroprotection (Defined as a HAI Antibody Titer of 1:40 or Greater) Approximately 28 Days Following Receipt of IIV Delivered by Microneedle Patch or by Hypodermic Needle (Both Vaccines Administered by Study Staff). |
Synthesis of results: Published paper “The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): a randomized, partly blinded, placebo-controlled, phase 1 trial” The Lancet, 2017, DOI: 10.1016/S0140-6736(17)30575-5. Conclusion: use of dissolvable microneedle patches for influenza vaccination was well tolerated and generated robust antibody responses. |
Protocol and registration: NCT03207763 |
Eligibility criteria: 6 Weeks to 24 Months (Child) |
Information sources: Clinical Trials.gov |
Search: https://clinicaltrials.gov/ct2/show/study/NCT03207763; 13 November 2020, updated on 18 February 2021 |
Study selection: Interventional, Non-Randomized, A Study to Evaluate the Safety, Reactogenicity, and Acceptability of a Placebo Microneedle Patch in Healthy Infants and Young Children. |
Data collection process: Microneedles can be prepared as a low-cost patch that is simple for patients to apply for vaccine delivery targeting the many antigen-presenting cells present in the skin. Data regarding the safety, reactogenicity, tolerability, and acceptability of a microneedle patch in children are lacking. The goal of this study is to evaluate the safety, reactogenicity, and acceptability of placement of a placebo microneedle patch to the skin of children. |
Data items: 33 participants recruited and allocated to the following interventional groups: Cohort 1: Eight Participating infants and children receiving Microneedle Formulation 1. Children had a microneedle patch initially applied to the skin overlying the shoulder blade. If the first patch was well tolerated without halting criteria having been met, participants could opt to have two additional microneedle patches applied to the upper arm, forearm, wrist and/or thigh. Cohort 2: 25 Participating infants and children receiving Microneedle Formulation 2. Children had a microneedle patch initially applied to the skin overlying the shoulder blade. If the first patch was well tolerated without halting criteria having been met, participants could opt to have two additional microneedle patches applied to the upper arm, forearm, wrist and/or thigh. |
Risk of bias in individual studies: NA |
Summary measures: Primary out comes: Number of Participants With Placebo Microneedle Patch-related Serious Adverse Events (SAE). Number of Participants With Grade 3 Placebo Microneedle Patch-related Solicited Adverse Events (AE). Number of Participants With Solicited Application Site Reactogenicity Events. Secondary outcome: Number of Participants With Grade 3 Placebo Microneedle Patch-related Unsolicited Adverse Events. Number of New-onset Medical Conditions (NOMC). Acceptability of Vaccination Methods. Time frame: Day 1, Day 2, Day 8, Final Visit (Day 27–38) |
Synthesis of results: No adverse events were recorded for any of the 33 participating infants. Study is not published |
References
- Stern, A.M.; Markel, H. The History of Vaccines and Immunization: Familiar Patterns, New Challenges. Health Aff. 2005, 24, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Vaccine Types|NIH: National Institute of Allergy and Infectious Diseases. Available online: https://www.niaid.nih.gov/research/vaccine-types (accessed on 25 January 2021).
- Rappuoli, R. Vaccines: Science, health, longevity, and wealth. Proc. Natl. Acad. Sci. USA 2014, 111, 12282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lycke, N. Recent progress in mucosal vaccine development: Potential and limitations. Nat. Rev. Immunol. 2012, 12, 592–605. [Google Scholar] [CrossRef]
- Ogra, P.L.; Faden, H.; Welliver, R.C. Vaccination Strategies for Mucosal Immune Responses. Clin. Microbiol. Rev. 2001, 14, 430–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Criscuolo, E.; Caputo, V.; Diotti, R.A.; Sautto, G.A.; Kirchenbaum, G.A.; Clementi, N. Alternative Methods of Vaccine Delivery: An Overview of Edible and Intradermal Vaccines. J. Immunol. Res. 2019, 2019, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wang, Y.; Sun, Y.; Cui, H.; Zhu, S.J.; Qiu, H.-J. Mucosal vaccines: Strategies and challenges. Immunol. Lett. 2020, 217, 116–125. [Google Scholar] [CrossRef]
- Czerkinsky, C.; Holmgren, J. Mucosal Delivery Routes for Optimal Immunization: Targeting Immunity to the Right Tissues. In Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2010; Volume 354, pp. 1–18. [Google Scholar]
- Pabst, R. Mucosal vaccination by the intranasal route. Nose-associated lymphoid tissue (NALT)—Structure, function and species differences. Vaccine 2015, 33, 4406–4413. [Google Scholar] [CrossRef]
- De Swart, R.L.; De Vries, R.D.; Rennick, L.J.; Van Amerongen, G.; McQuaid, S.; Verburgh, R.J.; Yüksel, S.; De Jong, A.; Lemon, K.; Nguyen, D.T.; et al. Needle-free delivery of measles virus vaccine to the lower respiratory tract of non-human primates elicits optimal immunity and protection. NPJ Vaccines 2017, 2, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Miquel-Clopés, A.; Bentley, E.G.; Stewart, J.P.; Carding, S.R. Mucosal vaccines and technology. Clin. Exp. Immunol. 2019, 196, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Snapper, C.M. Distinct Immunologic Properties of Soluble Versus Particulate Antigens. Front. Immunol. 2018, 9, 598. [Google Scholar] [CrossRef] [PubMed]
- Chadwick, S.; Kriegel, C.; Amiji, M. Nanotechnology solutions for mucosal immunization. Adv. Drug Deliv. Rev. 2010, 62, 394–407. [Google Scholar] [CrossRef] [PubMed]
- Kraan, H.; Vrieling, H.; Czerkinsky, C.; Jiskoot, W.; Kersten, G.; Amorij, J.-P. Buccal and sublingual vaccine delivery. J. Control. Release 2014, 190, 580–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czerkinsky, C.; Çuburu, N.; Kweon, M.-N.; Anjuère, F.; Holmgren, J. Sublingual vaccination. Hum. Vaccines 2011, 7, 110–114. [Google Scholar] [CrossRef] [Green Version]
- Song, J.-H.; Nguyen, H.H.; Cuburu, N.; Horimoto, T.; Ko, S.-Y.; Park, S.-H.; Czerkinsky, C.; Kweon, M.-N. Sublingual vaccination with influenza virus protects mice against lethal viral infection. Proc. Natl. Acad. Sci. USA 2008, 105, 1644–1649. [Google Scholar] [CrossRef] [Green Version]
- Fujihashi, K.; Koga, T.; Van Ginkel, F.W.; Hagiwara, Y.; McGhee, J.R. A dilemma for mucosal vaccination: Efficacy versus toxicity using enterotoxin-based adjuvants. Vaccine 2002, 20, 2431–2438. [Google Scholar] [CrossRef]
- Pais, R.; Omosun, Y.; He, Q.; Blas-Machado, U.; Black, C.; Igietseme, J.U.; Fujihashi, K.; Eko, F.O. Rectal administration of a chlamydial subunit vaccine protects against genital infection and upper reproductive tract pathology in mice. PLoS ONE 2017, 12, e0178537. [Google Scholar] [CrossRef]
- Echchannaoui, H.; Bianchi, M.; Baud, D.; Bobst, M.; Stehle, J.-C.; Nardelli-Haefliger, D. Intravaginal Immunization of Mice with Recombinant Salmonella enterica Serovar Typhimurium Expressing Human Papillomavirus Type 16 Antigens as a Potential Route of Vaccination against Cervical Cancer. Infect. Immun. 2008, 76, 1940–1951. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Perez, J.; Hammer, L.A.; Gallagher, H.C.; De Jesus, M.; Egilmez, N.K.; Russell, M.W. Intravaginal Administration of Interleukin 12 during Genital Gonococcal Infection in Mice Induces Immunity to Heterologous Strains of Neisseria gonorrhoeae. mSphere 2018, 3, e00421-17. [Google Scholar] [CrossRef] [Green Version]
- List of Vaccines|CDC. Available online: https://www.cdc.gov/vaccines/vpd/vaccines-list.html (accessed on 22 February 2021).
- Zhang, L.; Wang, W.; Wang, S. Effect of vaccine administration modality on immunogenicity and efficacy. Expert Rev. Vaccines 2015, 14, 1509–1523. [Google Scholar] [CrossRef]
- Darrah, P.A.; Zeppa, J.J.; Maiello, P.; Hackney, J.A.; Ii, M.H.W.; Hughes, T.K.; Pokkali, S.; Ii, P.A.S.; Grant, N.L.; Rodgers, M.A.; et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature 2020, 577, 95–102. [Google Scholar] [CrossRef]
- Prausnitz, M.R.; Goodson, J.L.; Rota, P.A.; Orenstein, W.A. A microneedle patch for measles and rubella vaccination: A game changer for achieving elimination. Curr. Opin. Virol. 2020, 41, 68–76. [Google Scholar] [CrossRef]
- Immunization and Respiratory Diseases (NCIRD) Home|CDC. Available online: https://www.cdc.gov/ncird/index.html (accessed on 22 January 2021).
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Marc, G.P.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Hickling, J.K.; Jones, K.R.; Friede, M.; Zehrung, D.; Chen, D.; Kristensen, D. Intradermal delivery of vaccines: Potential benefits and current challenges. Bull. World Health Organ. 2011, 89, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Gala, R.P.; Zaman, R.U.; D’Souza, M.J.; Zughaier, S.M. Novel Whole-Cell Inactivated Neisseria Gonorrhoeae Microparticles as Vaccine Formulation in Microneedle-Based Transdermal Immunization. Vaccines 2018, 6, 60. [Google Scholar] [CrossRef] [Green Version]
- Larrañeta, E.; Lutton, R.E.; Woolfson, A.D.; Donnelly, R.F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater. Sci. Eng. R Rep. 2016, 104, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Nagarkar, R.; Singh, M.; Nguyen, H.X.; Jonnalagadda, S. A review of recent advances in microneedle technology for transdermal drug delivery. J. Drug Deliv. Sci. Technol. 2020, 59, 101923. [Google Scholar] [CrossRef]
- CFR—Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=177&showFR=1 (accessed on 29 March 2021).
- Kim, Y.-C.; Park, J.-H.; Prausnitz, M.R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 2012, 64, 1547–1568. [Google Scholar] [CrossRef] [Green Version]
- Lambert, P.H.; Laurent, P.E. Intradermal vaccine delivery: Will new delivery systems transform vaccine administration? Vaccine 2008, 26, 3197–3208. [Google Scholar] [CrossRef]
- Rodgers, A.M.; Cordeiro, A.S.; Kissenpfennig, A.; Donnelly, R.F. Microneedle arrays for vaccine delivery: The possibilities, challenges and use of nanoparticles as a combinatorial approach for enhanced vaccine immunogenicity. Expert Opin. Drug Deliv. 2018, 15, 851–867. [Google Scholar] [CrossRef] [Green Version]
- Laurent, P.E.; Bonnet, S.; Alchas, P.; Regolini, P.; Mikszta, J.A.; Pettis, R.; Harvey, N.G. Evaluation of the clinical performance of a new intradermal vaccine administration technique and associated delivery system. Vaccine 2007, 25, 8833–8842. [Google Scholar] [CrossRef]
- Ellison, T.J.; Talbott, G.C.; Henderson, D.R. VaxiPatch™, a novel vaccination system comprised of subunit antigens, adjuvants and microneedle skin delivery: An application to influenza B/Colorado/06/2017. Vaccine 2020, 38, 6839–6848. [Google Scholar] [CrossRef]
- Caucheteux, S.M.; Mitchell, J.P.; Ivory, M.O.; Hirosue, S.; Hakobyan, S.; Dolton, G.; Ladell, K.; Miners, K.; Price, D.A.; Kan-Mitchell, J.; et al. Polypropylene Sulfide Nanoparticle p24 Vaccine Promotes Dendritic Cell-Mediated Specific Immune Responses against HIV-1. J. Investig. Dermatol. 2016, 136, 1172–1181. [Google Scholar] [CrossRef] [Green Version]
- Seok, H.; Noh, J.Y.; Lee, D.Y.; Kim, S.J.; Song, C.S.; Kim, Y.C. Effective humoral immune response from a H1N1 DNA vaccine delivered to the skin by microneedles coated with PLGA-based cationic nanoparticles. J. Control. Release 2017, 265, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Jung, D.; Rejinold, N.S.; Kwak, J.-E.; Park, S.-H.; Kim, Y.-C. Nano-patterning of a stainless steel microneedle surface to improve the dip-coating efficiency of a DNA vaccine and its immune response. Colloids Surfaces B Biointerfaces 2017, 159, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Duong, H.T.T.; Kim, N.W.; Thambi, T.; Phan, V.G.; Lee, M.S.; Yin, Y.; Jeong, J.H.; Lee, D.S. Microneedle arrays coated with charge reversal pH-sensitive copolymers improve antigen presenting cells-homing DNA vaccine delivery and immune responses. J. Control. Release 2018, 269, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Meyer, B.K.; Kendall, M.A.; Williams, D.M.; Bett, A.J.; Dubey, S.; Gentzel, R.C.; Casimiro, D.; Forster, A.; Corbett, H.; Crichton, M.; et al. Immune response and reactogenicity of an unadjuvanted intradermally delivered human papillomavirus vaccine using a first generation Nanopatch™ in rhesus macaques: An exploratory, pre-clinical feasibility assessment. Vaccine X 2019, 2, 100030. [Google Scholar] [CrossRef] [PubMed]
- Fernando, G.J.; Hickling, J.; Flores, C.M.J.; Griffin, P.; Anderson, C.D.; Skinner, S.R.; Davies, C.; Witham, K.; Pryor, M.; Bodle, J.; et al. Safety, tolerability, acceptability and immunogenicity of an influenza vaccine delivered to human skin by a novel high-density microprojection array patch (Nanopatch™). Vaccine 2018, 36, 3779–3788. [Google Scholar] [CrossRef] [PubMed]
- Duong, H.T.T.; Yin, Y.; Thambi, T.; Nguyen, T.L.; Phan, V.G.; Lee, M.S.; Lee, J.E.; Kim, J.; Jeong, J.H.; Lee, D.S. Smart vaccine delivery based on microneedle arrays decorated with ultra-pH-responsive copolymers for cancer immunotherapy. Biomaterials 2018, 185, 13–24. [Google Scholar] [CrossRef]
- Stinson, J.A.; Raja, W.K.; Lee, S.; Kim, H.B.; Diwan, I.; Tutunjian, S.; Panilaitis, B.; Omenetto, F.G.; Tzipori, S.; Kaplan, D.L. Silk Fibroin Microneedles for Transdermal Vaccine Delivery. ACS Biomater. Sci. Eng. 2017, 3, 360–369. [Google Scholar] [CrossRef]
- Silva, A.L.; Soema, P.C.; Slütter, B.; Ossendorp, F.; Jiskoot, W. PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity. Hum. Vaccines Immunother. 2016, 12, 1056–1069. [Google Scholar] [CrossRef]
- Du, G.; Hathout, R.M.; Nasr, M.; Nejadnik, M.R.; Tu, J.; Koning, R.I.; Koster, A.J.; Slütter, B.; Kros, A.; Jiskoot, W.; et al. Intradermal vaccination with hollow microneedles: A comparative study of various protein antigen and adjuvant encapsulated nanoparticles. J. Control. Release 2017, 266, 109–118. [Google Scholar] [CrossRef]
- Niu, L.; Chu, L.Y.; Burton, S.A.; Hansen, K.J.; Panyam, J. Intradermal delivery of vaccine nanoparticles using hollow microneedle array generates enhanced and balanced immune response. J. Control. Release 2019, 294, 268–278. [Google Scholar] [CrossRef]
- Pamornpathomkul, B.; Niyomtham, N.; Yingyongnarongkul, B.-E.; Prasitpuriprecha, C.; Rojanarata, T.; Ngawhirunpat, T.; Opanasopit, P. Cationic Niosomes for Enhanced Skin Immunization of Plasmid DNA-Encoding Ovalbumin via Hollow Microneedles. AAPS PharmSciTech 2017, 19, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Van der Maaden, K.; Heuts, J.; Camps, M.; Pontier, M.; van Scheltinga, A.T.; Jiskoot, W.; Ossendorp, F.; Bouwstra, J. Hollow microneedle-mediated micro-injections of a liposomal HPV E743–63 synthetic long peptide vaccine for efficient induction of cytotoxic and T-helper responses. J. Control. Release 2018, 269, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, S.P.; Koutsonanos, D.G.; Martin, M.D.P.; Lee, J.W.; Zarnitsyn, V.; Choi, S.-O.; Murthy, N.; Compans, R.W.; Skountzou, I.; Prausnitz, M.R. Dissolving polymer microneedle patches for influenza vaccination. Nat. Med. 2010, 16, 915–920. [Google Scholar] [CrossRef]
- Arya, J.M.; DeWitt, K.; Scott-Garrard, M.; Chiang, Y.-W.; Prausnitz, M.R. Rabies vaccination in dogs using a dissolving microneedle patch. J. Control. Release 2016, 239, 19–26. [Google Scholar] [CrossRef]
- Mistilis, M.J.; Joyce, J.C.; Esser, E.S.; Skountzou, I.; Compans, R.W.; Bommarius, A.S.; Prausnitz, M.R. Long-term stability of influenza vaccine in a dissolving microneedle patch. Drug Deliv. Transl. Res. 2017, 7, 195–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flynn, O.; Dillane, K.; Lanza, J.; Marshall, J.; Jin, J.; Silk, S.; Draper, S.; Moore, A. Low Adenovirus Vaccine Doses Administered to Skin Using Microneedle Patches Induce Better Functional Antibody Immunogenicity as Compared to Systemic Injection. Vaccines 2021, 9, 299. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.A.; McCrudden, C.M.; McCaffrey, J.; McBride, J.W.; Cole, G.; Dunne, N.J.; Robson, T.; Kissenpfennig, A.; Donnelly, R.F.; McCarthy, H.O. DNA vaccination for cervical cancer; a novel technology platform of RALA mediated gene delivery via polymeric microneedles. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 921–932. [Google Scholar] [CrossRef] [Green Version]
- Duong, H.T.T.; Yin, Y.; Thambi, T.; Kim, B.S.; Jeong, J.H.; Lee, D.S. Highly potent intradermal vaccination by an array of dissolving microneedle polypeptide cocktails for cancer immunotherapy. J. Mater. Chem. B 2020, 8, 1171–1181. [Google Scholar] [CrossRef]
- Esser, E.S.; Romanyuk, A.; Vassilieva, E.V.; Jacob, J.; Prausnitz, M.R.; Compans, R.W.; Skountzou, I. Tetanus vaccination with a dissolving microneedle patch confers protective immune responses in pregnancy. J. Control. Release 2016, 236, 47–56. [Google Scholar] [CrossRef]
- Hsueh, K.-J.; Chen, M.-C.; Cheng, L.-T.; Lee, J.-W.; Chung, W.-B.; Chu, C.-Y. Transcutaneous immunization of Streptococcus suis bacterin using dissolving microneedles. Comp. Immunol. Microbiol. Infect. Dis. 2017, 50, 78–87. [Google Scholar] [CrossRef]
- Lanza, J.S.; Vucen, S.; Flynn, O.; Donadei, A.; Cojean, S.; Loiseau, P.M.; Fernandes, A.P.S.; Frézard, F.; Moore, A.C. A TLR9-adjuvanted vaccine formulated into dissolvable microneedle patches or cationic liposomes protects against leishmaniasis after skin or subcutaneous immunization. Int. J. Pharm. 2020, 586, 119390. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.S.; Fatima, S.; Nazari, K.; Ali, R.; Farhan, M.; Muhammad, S.A.; Abbas, N.; Hussain, A.; Kucuk, I.; Chang, M.-W.; et al. Engineering and characterisation of BCG-loaded polymeric microneedles. J. Drug Target. 2019, 28, 525–532. [Google Scholar] [CrossRef]
- Zhou, Z.; Pang, J.; Wu, X.; Wu, W.; Chen, X.; Kong, M. Reverse immune suppressive microenvironment in tumor draining lymph nodes to enhance anti-PD1 immunotherapy via nanovaccine complexed microneedle. Nano Res. 2020, 13, 1509–1518. [Google Scholar] [CrossRef]
- Choi, I.-J.; Kang, A.; Ahn, M.-H.; Jun, H.; Baek, S.-K.; Park, J.-H.; Na, W.; Choi, S.-O. Insertion-responsive microneedles for rapid intradermal delivery of canine influenza vaccine. J. Control. Release 2018, 286, 460–466. [Google Scholar] [CrossRef]
- Choi, I.-J.; Na, W.; Kang, A.; Ahn, M.-H.; Yeom, M.; Kim, H.-O.; Lim, J.-W.; Choi, S.-O.; Baek, S.-K.; Song, D.; et al. Patchless administration of canine influenza vaccine on dog’s ear using insertion-responsive microneedles (IRMN) without removal of hair and its in vivo efficacy evaluation. Eur. J. Pharm. Biopharm. 2020, 153, 150–157. [Google Scholar] [CrossRef]
- Wang, C.; Ye, Y.; Hochu, G.M.; Sadeghifar, H.; Gu, Z. Enhanced Cancer Immunotherapy by Microneedle Patch-Assisted Delivery of Anti-PD1 Antibody. Nano Lett. 2016, 16, 2334–2340. [Google Scholar] [CrossRef] [PubMed]
- Tran, K.T.M.; Gavitt, T.D.; Farrell, N.J.; Curry, E.J.; Mara, A.B.; Patel, A.; Brown, L.; Kilpatrick, S.; Piotrowska, R.; Mishra, N.; et al. Transdermal microneedles for the programmable burst release of multiple vaccine payloads. Nat. Biomed. Eng. 2020, 1–10. [Google Scholar] [CrossRef]
- Kim, J.S.; Choi, J.-A.; Kim, J.C.; Park, H.; Yang, E.; Park, J.S.; Song, M.; Park, J.-H. Microneedles with dual release pattern for improved immunological efficacy of Hepatitis B vaccine. Int. J. Pharm. 2020, 591, 119928. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; He, Y.; Deng, L.; Zhang, Z.-R.; Lin, Y. A fast-dissolving microneedle array loaded with chitosan nanoparticles to evoke systemic immune responses in mice. J. Mater. Chem. B 2020, 8, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Frew, P.M.; Paine, M.B.; Rouphael, N.; Schamel, J.; Chung, Y.; Mulligan, M.J.; Prausnitz, M.R. Acceptability of an inactivated influenza vaccine delivered by microneedle patch: Results from a phase I clinical trial of safety, reactogenicity, and immunogenicity. Vaccine 2020, 38, 7175–7181. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Erdos, G.; Huang, S.; Kenniston, T.W.; Balmert, S.C.; Carey, C.D.; Raj, V.S.; Epperly, M.W.; Klimstra, W.B.; Haagmans, B.L.; et al. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBioMedicine 2020, 55, 102743. [Google Scholar] [CrossRef]
- Ingrole, R.S.; Azizoglu, E.; Dul, M.; Birchall, J.C.; Gill, H.S.; Prausnitz, M.R. Trends of microneedle technology in the scientific literature, patents, clinical trials and internet activity. Biomaterials 2021, 267, 120491. [Google Scholar] [CrossRef]
- Indermun, S.; Luttge, R.; Choonara, Y.E.; Kumar, P.; du Toit, L.C.; Modi, G.; Pillay, V. Current advances in the fabrication of microneedles for transdermal delivery. J. Control. Release 2014, 185, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, A.M.; Cordeiro, A.S.; Donnelly, R.F. Technology update: Dissolvable microneedle patches for vaccine delivery. Med. Devices Évid. Res. 2019, 12, 379–398. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, R.F.; Singh, T.R.R.; Woolfson, A.D. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety. Drug Deliv. 2010, 17, 187–207. [Google Scholar] [CrossRef] [Green Version]
- WHO. Vaccine Vial Monitor (VVM) Assignments for Different WHO-Prequalified Vaccines and Their Proper Handling. Available online: https://www.who.int/immunization/programmes_systems/service_delivery/EN_Information_Bulletin_VVM_assignments.pdf?ua=1 (accessed on 31 January 2021).
- Carnegie Mellon University. CMU-Developed Microneedle Patches Ready for COVID-19 Fight—CMU Ambassadors—Carne-gie Mellon University. Available online: https://www.cmu.edu/ambassadors/may-2020/microneedle-patches.html (accessed on 21 February 2021).
- NIH. Microneedle Coronavirus Vaccine Triggers Immune Response in Mice. Available online: https://www.nih.gov/news-events/nih-research-matters/microneedle-coronavirus-vaccine-triggers-immune-response-mice (accessed on 22 February 2021).
- US Pharmacist. Microneedle Patch Effective for Delivering COVID-19 Vaccine? Available online: https://www.uspharmacist.com/article/microneedle-patch-effective-for-delivering-covid19-vaccine (accessed on 22 February 2021).
- Micron Receives Contract from CDC to Manufacture IRV Microneedle Patches—Micron Biomedical, Atlanta. Micron Receives Contract from CDC to Manufacture IRV Microneedle Patches. 2020. Available online: https://micronbiomedical.com/micron-biomedical-progresses-with-clinical-evaluation-of-its-technology-for-measles-rubella-vaccination-2-2/ (accessed on 18 February 2021).
- Drug Formulation Technologies|Kindeva Complex Drug CDMO, St. Paul, MN, USA. Available online: https://kindevadd.com/technologies/#mts (accessed on 5 April 2021).
- News & Events—BD SoluviaTM Microinjection System Used for First Approved Intradermal Influenza Vaccine in the Euro-pean Union. Available online: https://www.bd.com/contentmanager/b_article.asp?Item_ID=23817&ContentType_ID=1&BusinessCode=20001&d=&s=&dTitle=&dc=&dcTitle= (accessed on 18 February 2021).
- Gallagher, K. FluGen Inc. Focused on Efficacy—Flugen Lands $7.8 Million Shot of Investment Capital. Journal Sentinel. Madison, University of Wisconsin 21 February 2011 Debiotech. Available online: http://flugen.com/flugen-lands-7-8-million-shot-of-investment-capital/ (accessed on 18 February 2021).
- Debiotech. Available online: https://debiotech.com/old/page/index.php?page=home (accessed on 18 February 2021).
- Vescovo, P.; Piveteau, L.-D. Your Solution for Successful Intradermal Delivery. ONdrugDelivery Magazine, 15 May 2014; 10–14. [Google Scholar]
- Intelligence (camaleo.com), C. Web. Home—Verndari—Transforming Vaccines. Available online: https://www.verndariinc.com/home (accessed on 18 February 2021).
- Fimrite, P. Here Are the Latest Updates on Coronavirus Treatments and the Moderna, Pfizer and Other Vaccines. Available online: https://www.sfchronicle.com/health/article/Coronavirus-treatments-and-vaccines-Here-are-the-15759407.php (accessed on 18 February 2021).
- NanoPass is Joining Forces with Pharma Partners in The Fight against The COVID-19 Pandemic—NanoPass Technologies Ltd, Nes Ziona, Israel. Available online: https://www.nanopass.com/idri-nanopass-sign-agreement-to-develop-an-intradermal-rvrna-based-zika-virus-vaccine-2/ (accessed on 5 April 2021).
- Our DDS Technologies. Available online: http://www.bioserentach.co.jp/e-technologies.html (accessed on 18 February 2021).
- Lymphatic Delivery System. Available online: https://sorrentotherapeutics.com/research/sofusa-lymphatic-delivery-system/ (accessed on 18 February 2021).
- Vaxxas Nanopatch—Home. Available online: http://www.vaxxas.com/ (accessed on 18 February 2021).
- Jun, H.; Ahn, M.-H.; Choi, I.-J.; Baek, S.-K.; Park, J.-H.; Choi, S.-O. Immediate Separation of Microneedle Tips from Base Array during Skin Insertion for Instantaneous Drug Delivery. RSC Adv. 2018, 8, 17786–17796. [Google Scholar] [CrossRef] [Green Version]
- Vaxess Technologies. Unlocking the Power of Our Immune System with MIMIXTM. Available online: http://vaxess.com/ (accessed on 18 February 2021).
- RAPHAS. Available online: http://www.raphas.com/kr/tech/rnd (accessed on 18 February 2021).
- Electronic Code of Federal Regulations (eCFR). Available online: https://www.ecfr.gov/ (accessed on 22 February 2021).
- Center for Devices and Radiological Health. Regulatory Considerations for Microneedling Products. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/regulatory-considerations-microneedling-products (accessed on 22 February 2021).
- Code of Federal Regulations (Annual Edition). Available online: https%3A%2F%2Fwww.govinfo.gov%2Fapp%2Fcollection%2Fcfr (accessed on 22 February 2021).
Route | Vaccine | Disease |
---|---|---|
Oral | Dukoral®, Shanchol™, and Euvichol® | Cholera |
Rotarix®, RotaTeq® | Rotavirus | |
Typhim Vi® | Typhoid | |
Adenovirus type 4 and type 7 vaccine | Adenovirus | |
Nasal | FluMist® | Influenza |
IM | Daptacel®, Infanrix® | Diphtheria, tetanus, pertussis (DTaP) |
Pfizer-BioNTech COVID-19 Vaccine, Moderna COVID-19 Vaccine, Covishield | COVID-19 | |
Havrix® (Hepatitis A), Engerix® (Hepatitis B); Twinrix® | Hepatitis A, Hepatitis B | |
Gardasil® 9 | Human papillomavirus (HPV) | |
Menactra®, Trumenba®, Bexsero® | Meningococcal | |
SC | M-M-R® II | Measles, mumps, and rubella (MMR) |
Varivax® | Varicella (Var) | |
Intradermal | BCG Vaccine | Tuberculosis |
Company | Type of Microneedle | Disease | Company Website |
---|---|---|---|
Micron Biomedical | Dissolving microneedle | Inactivated rotavirus | [79] |
3M (Kindeva) | Hollow microneedle | Cancer vaccines | [80] |
BD Technologies (BS Soluvia) | Stainless steel microneedles | Influenza | [81] |
Flugen | Metal microneedles | Influenza | [82] |
Debiotech | Hollow microneedles | COVID-19 | [83] |
Verndari (Vaxipatch) | Stainless steel microneedle | Influenza, COVID-19 | [84,85] |
Nanopass (MicroJetTM) | Silicon microneedles | Influenza, Polio, Varicella-Zoster, Cancers, Hepatitis B, COVID-19 | [86] |
BioSerenTach Inc. | Dissolving microneedles | Vaccine | [87] |
Sorrento therapeutics (Sofusa®) | Nanotopographical imprinted microneedles (coated) | Immuno-oncology | [88] |
Vaxxas (NanopatchTM) | Coated microneedles array patch | Influenza, COVID-19 | [89] |
Quadmedicine | Dissolving microneedles | Influenza, Canine Influenza | [90] |
Vaxess | Dissolving microneedles | Influenza, COVID-19, skin cancer | [91] |
Raphas | Dissolving microneedles | HPV, Polio, Tdap, HBV, IPV, and Hepatitis B | [92] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menon, I.; Bagwe, P.; Gomes, K.B.; Bajaj, L.; Gala, R.; Uddin, M.N.; D’Souza, M.J.; Zughaier, S.M. Microneedles: A New Generation Vaccine Delivery System. Micromachines 2021, 12, 435. https://doi.org/10.3390/mi12040435
Menon I, Bagwe P, Gomes KB, Bajaj L, Gala R, Uddin MN, D’Souza MJ, Zughaier SM. Microneedles: A New Generation Vaccine Delivery System. Micromachines. 2021; 12(4):435. https://doi.org/10.3390/mi12040435
Chicago/Turabian StyleMenon, Ipshita, Priyal Bagwe, Keegan Braz Gomes, Lotika Bajaj, Rikhav Gala, Mohammad N. Uddin, Martin J. D’Souza, and Susu M. Zughaier. 2021. "Microneedles: A New Generation Vaccine Delivery System" Micromachines 12, no. 4: 435. https://doi.org/10.3390/mi12040435
APA StyleMenon, I., Bagwe, P., Gomes, K. B., Bajaj, L., Gala, R., Uddin, M. N., D’Souza, M. J., & Zughaier, S. M. (2021). Microneedles: A New Generation Vaccine Delivery System. Micromachines, 12(4), 435. https://doi.org/10.3390/mi12040435