Sternal Bone Marrow Harvesting and Culturing Techniques from Patients Undergoing Cardiac Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Initial Sample Collection
2.2. MSC Isolation and Culturing
2.3. MSC Expansion
2.4. Surface Phenotyping
2.5. Adipogenesis Differentiation
2.6. Osteogenesis Differentiation
2.7. Chondrogenesis Differentiation
2.8. MSC Expansion Timing and Cell Count
3. Results
3.1. Surface Phenotyping
3.2. MSC Differentiation
3.3. MSC Expansion Timing and Cell Count
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Wang, S.; Qu, X.; Zhao, R.C. Clinical applications of mesenchymal stem cells. J. Hematol. Oncol. 2012, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Murray, I.R.; Péault, B. Q&A: Mesenchymal Stem Cells—Where do they Come from and is it Important? BMC Biol. 2015, 13, 1–6. [Google Scholar]
- Le Blanc, K.; Ringdén, O. Immunomodulation by mesenchymal stem cells and clinical experience. J. Intern. Med. 2007, 262, 509–525. [Google Scholar] [CrossRef]
- Yi, T.; Song, S.U. Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Arch. Pharmacal Res. 2012, 35, 213–221. [Google Scholar] [CrossRef]
- Le Blanc, K.; Rasmusson, I.; Sundberg, B.; Götherström, C.; Hassan, M.; Uzunel, M.; Ringdén, O. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004, 363, 1439–1441. [Google Scholar] [CrossRef]
- Chen, S.-L.; Fang, W.-W.; Ye, F.; Liu, Y.-H.; Qian, J.; Shan, S.-J.; Zhang, J.-J.; Chunhua, R.Z.; Liao, L.-M.; Lin, S.; et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am. J. Cardiol. 2004, 94, 92–95. [Google Scholar] [CrossRef]
- Zhang, S.; Ge, J.; Sun, A.; Xu, D.; Qian, J.; Lin, J.; Zhao, Y.; Hu, H.; Li, Y.; Wang, K.; et al. Comparison of various kinds of bone marrow stem cells for the repair of infarcted myocardium: Single clonally purified non-hematopoietic mesenchymal stem cells serve as a superior source. J. Cell. Biochem. 2006, 99, 1132–1147. [Google Scholar] [CrossRef]
- Bruder, S.P.; Kurth, A.A.; Shea, M.; Hayes, W.C.; Jaiswal, N.; Kadiyala, S. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J. Orthop. Res. 1998, 16, 155–162. [Google Scholar] [CrossRef]
- Gupta, P.K.; Das, A.K.; Chullikana, A.; Majumdar, A.S. Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell Res. Ther. 2012, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Ma, J.; Han, J.; Zhang, W.; Ma, J. Mesenchymal stem cell related therapies for cartilage lesions and osteoarthritis. Am. J. Transl. Res. 2019, 11, 6275–6289. [Google Scholar]
- Tuan, R.S.; Boland, G.; Tuli, R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res. 2003, 5, 32–45. [Google Scholar] [CrossRef] [Green Version]
- Keating, A. Mesenchymal Stromal Cells: New Directions. Cell Stem Cell 2012, 10, 709–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedenstein, A.J.; Chailakhjan, R.K.; Lalykina, K.S. The Development of Fibroblast Colonies in Monolayer Cultures of Guinea-Pig Bone Marrow and Spleen Cells. Cell Prolif. 1970, 3, 393–403. [Google Scholar] [CrossRef]
- Friedenstein, A.J.; Chailakhyan, R.K.; Latsinik, N.V.; Panasyuk, A.F.; Keiliss-Borok, I.V. Stromal Cells Responsible for Transferring the Microenvironment of the Hemopoietic Tissues. Transplantation 1974, 17, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Friedenstein, A.J.; Gorskaja, J.F.; Kulagina, N.N. Fibroblast Precursors in Normal and Irradiated Mouse Hematopoietic Organs. Exp. Hematol. 1976, 4, 267–274. [Google Scholar]
- Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage Potential of Adult Human Mesenchymal. Stem Cells. Sci. 1999, 284, 143–147. [Google Scholar]
- Haynesworth, S.; Goshima, J.; Goldberg, V.; Caplan, A. Characterization of cells with osteogenic potential from human marrow. Bone 1992, 13, 81–88. [Google Scholar] [CrossRef]
- Miura, M.; Gronthos, S.; Zhao, M.; Lu, B.; Fisher, L.W.; Robey, P.; Shi, S. SHED: Stem cells from human exfoliated deciduous teeth. Proc. Natl. Acad. Sci. USA 2003, 100, 5807–5812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuk, P.A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J.W.; Katz, A.J.; Benhaim, P.; Lorenz, H.P.; Hedrick, M.H. Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies. Tissue Eng. 2001, 7, 211–228. [Google Scholar] [CrossRef] [Green Version]
- Lee, O.K.; Kuo, T.K.; Chen, W.; Lee, K.; Hsieh, S.; Chen, T. Isolation of Multipotent Mesenchymal Stem Cells from Umbilical Cord Blood. Blood 2004, 103, 1669–1675. [Google Scholar] [CrossRef] [Green Version]
- Gardner, O.F.W.; Alini, M.; Stoddart, M.J. Mesenchymal Stem Cells Derived from Human Bone Marrow. Methods Mol. Biol. 2015, 1340, 41–52. [Google Scholar]
- Ferrin, I.; Beloqui, I.; Zabaleta, L.; Salcedo, J.M.; Trigueros, C.; Martin, A.G. Isolation, Culture, and Expansion of Mesenchymal Stem Cells. Methods Mol. Biol. 2017, 1590, 177–190. [Google Scholar] [PubMed]
- James, A.W.; Zara, J.N.; Zhang, X.; Askarinam, A.; Goyal, R.; Chiang, M.; Yuan, W.; Chang, L.; Corselli, M.; Shen, J.; et al. Perivascular Stem Cells: A Prospectively Purified Mesenchymal Stem Cell Population for Bone Tissue Engineering. Stem Cells Transl. Med. 2012, 1, 510–519. [Google Scholar] [CrossRef] [Green Version]
- Chahla, J.; Mannava, S.; Cinque, M.E.; Geeslin, A.G.; Codina, D.; LaPrade, R.F. Bone Marrow Aspirate Concentrate Harvesting and Processing Technique. Arthrosc. Tech. 2016, 6, e441–e445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asakura, Y.; Kinoshita, M.; Kasuya, Y.; Sakuma, S.; Ozaki, M. Ultrasound-Guided Sternal Bone Marrow Aspiration. Blood Res. 2017, 52, 148–150. [Google Scholar] [CrossRef] [Green Version]
- Sivasubramaniyan, K.; Ilas, D.; Harichandan, A.; Bos, P.K.; Santos, D.L.; De Zwart, P.; Koevoet, W.J.; Owston, H.; Bühring, H.-J.; Jones, E.; et al. Bone Marrow–Harvesting Technique Influences Functional Heterogeneity of Mesenchymal Stem/Stromal Cells and Cartilage Regeneration. Am. J. Sports Med. 2018, 46, 3521–3531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davila, E. Jamshidi Needle Biopsy of the Sternal Bone Marrow. Blood 2009, 114, 4548. [Google Scholar] [CrossRef]
- Trejo-Ayala, R.A.; Luna-Pérez, M.; Gutiérrez-Romero, M.; Collazo-Jaloma, J.; Cedillo-Pérez, M.C.; Ramos-Peñafiel, C.O. Bone Marrow Aspiration and Biopsy. Technique and Considerations. Rev. Méd. Hosp. Gen. México 2015, 78, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Arnáiz-García, M.E.; González-Santos, J.M.; Arnáiz-García, A.M.; López-Rodríguez, J.; Arnáiz, J. Acute Type A Aortic Dissection After Sternal Bone Marrow Puncture. Ann. Thorac. Surg. 2017, 104, e455. [Google Scholar] [CrossRef]
- Santavy, P.; Troubil, M.; Lonsky, V. Pericardial Tamponade: A Rare Complication of Sternal Bone Marrow Biopsy. Hematol. Rep. 2013, 5, e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gendron, N.; Zia Chahabi, S.; Poenou, G.; Rivet, N.; Belleville-Rolland, T.; Lemaire, P.; Escuret, A.; Ciaudo, M.; Curis, E.; Gaussem, P.; et al. Pain Assessment and Factors Influencing Pain during Bone Marrow Aspiration: A Prospective Study. PLoS ONE 2019, 14, e0221534. [Google Scholar] [CrossRef] [PubMed]
- Lubis, A.M.; Sandhow, L.; Lubis, V.K.; Noor, A.; Gumay, F.; Merlina, M.; Yang, W.; Kusnadi, Y.; Lorensia, V.; Sandra, F.; et al. Isolation and Cultivation of Mesenchymal Stem Cells from Iliac Crest Bone Marrow for Further Cartilage Defect Management. Indones. J. Intern. Med. 2011, 43, 178–184. [Google Scholar]
- Bozso, S.; Kang, J.; Adam, B.; Moon, M.; Freed, D.; Hatami, S.; Nagendran, J. Canadian Society of Cardiac Surgeons (CSCS) CSCS260 Poster: CSCS Poster Session II. Can. J. Cardiol. 2010, 26, 101D–104D. [Google Scholar]
- Skowroński, J.; Skowroński, R.; Rutka, M. Large Cartilage Lesions of the Knee Treated with Bone Marrow Concentrate and Collagen Membrane—Results. Ortop. Traumatol. Rehabil. 2013, 15, 69–76. [Google Scholar]
- Skowroński, J.; Rutka, M. Osteochondral Lesions of the Knee Reconstructed with Mesenchymal Stem Cells—Results. Ortop. Traumatol. Rehabil. 2013, 15, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, G.W.; Jung, G.H.; Kim, C.K.; Kim, T.; Park, J.H.; Cha, S.S.; You, Y. Clinical Outcome of Autologous Bone Marrow Aspirates Concentrate (BMAC) Injection in Degenerative Arthritis of the Knee. Eur. J. Orthop. Surg. Traumatol. 2014, 24, 1505–1511. [Google Scholar] [CrossRef]
- Elgaz, S.; Kuçi, Z.; Kuçi, S.; Bönig, H.; Bader, P. Clinical use of Mesenchymal Stromal Cells in the Treatment of Acute Graft-Versus-Host Disease. Transfus. Med. Hemother. 2019, 46, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Cho, S. Clinical Applications of Mesenchymal Stem Cells. Korean J. Intern. Med. 2013, 28, 387–402. [Google Scholar] [CrossRef]
- Singh, A.; Singh, A.; Sen, D. Mesenchymal Stem Cells in Cardiac Regeneration: A Detailed Progress Report of the Last 6 years (2010–2015). Stem. Cell Res. Therapy 2016, 7, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Golpanian, S.; Wolf, A.; Hatzistergos, K.; Hare, J.M. Rebuilding the Damaged Heart: Mesenchymal Stem Cells, Cell-Based Therapy, and Engineered Heart Tissue. Physiol. Rev. 2016, 96, 1127–1168. [Google Scholar] [CrossRef] [PubMed]
- Castro-Manrreza, M.E.; Montesinos, J.J. Immunoregulation by Mesenchymal Stem Cells: Biological Aspects and Clinical Applications. J. Immunol. Res. 2015, 2015, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Chan, A.S.H.; Coucouvanis, E.; Tousey, S.; Andersen, M.D.; Ni, J.H.T. Improved Expansion of MSC without Loss of Differentiation Potential; Stem Cell and Developmental Biology Department, R&D Systems, Inc.: Minneapolis, MN, USA, 2020. [Google Scholar]
- Spees, J.L.; Gregory, C.; Singh, H.; Tucker, H.; Peister, A.; Lynch, P.J.; Hsu, S.-C.; Smith, J.; Prockop, D.J. Internalized Antigens Must Be Removed to Prepare Hypoimmunogenic Mesenchymal Stem Cells for Cell and Gene Therapy. Mol. Ther. 2004, 9, 747–756. [Google Scholar] [CrossRef]
- Nimura, A.; Muneta, T.; Koga, H.; Mochizuki, T.; Suzuki, K.; Makino, H.; Umezawa, A.; Sekiya, I. Increased proliferation of human synovial mesenchymal stem cells with autologous human serum: Comparisons with bone marrow mesenchymal stem cells and with fetal bovine serum. Arthritis Rheum. 2008, 58, 501–510. [Google Scholar] [CrossRef]
- Kuznetsov, S.A.; Mankani, M.H.; Robey, P.G. Effect of Serum on Human Bone Marrow Stromal Cells: Ex Vivo Expansion and In Vivo Bone Formation. Transplantation 2000, 70, 1780–1787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, T.; Watanabe, H.; Yanagawa, T.; Tsutsumi, S.; Kayakabe, M.; Shinozaki, T.; Higuchi, H.; Takagishi, K. Motility and growth of human bone-marrow mesenchymal stem cells during ex vivo expansion in autologous serum. J. Bone Jt. Surgery. Br. 2005, 87, 1426–1433. [Google Scholar] [CrossRef] [Green Version]
- Shahdadfar, A.; Frønsdal, K.; Haug, T.; Reinholt, F.P.; Brinchmann, J.E. In Vitro Expansion of Human Mesenchymal Stem Cells: Choice of Serum Is a Determinant of Cell Proliferation, Differentiation, Gene Expression, and Transcriptome Stability. Stem Cells 2005, 23, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Stute, N.; Holtz, K.; Bubenheim, M.; Lange, C.; Blake, F.; Zander, A.R. Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use. Exp. Hematol. 2004, 32, 1212–1225. [Google Scholar] [CrossRef]
- Yamamoto, N.; Isobe, M.; Negishi, A.; Yoshimasu, H.; Shimokawa, H.; Ohya, K.; Amagasa, T.; Kasugai, S. Effects of autologous serum on osteoblastic differentiation in human bone marrow cells. J. Med. Dent. Sci. 2003, 50, 63–69. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.J.H.; Bozso, S.J.; EL-Andari, R.; Moon, M.C.; Freed, D.H.; Nagendran, J.; Nagendran, J. Sternal Bone Marrow Harvesting and Culturing Techniques from Patients Undergoing Cardiac Surgery. Micromachines 2021, 12, 897. https://doi.org/10.3390/mi12080897
Kang JJH, Bozso SJ, EL-Andari R, Moon MC, Freed DH, Nagendran J, Nagendran J. Sternal Bone Marrow Harvesting and Culturing Techniques from Patients Undergoing Cardiac Surgery. Micromachines. 2021; 12(8):897. https://doi.org/10.3390/mi12080897
Chicago/Turabian StyleKang, Jimmy J. H., Sabin J. Bozso, Ryaan EL-Andari, Michael C. Moon, Darren H. Freed, Jayan Nagendran, and Jeevan Nagendran. 2021. "Sternal Bone Marrow Harvesting and Culturing Techniques from Patients Undergoing Cardiac Surgery" Micromachines 12, no. 8: 897. https://doi.org/10.3390/mi12080897
APA StyleKang, J. J. H., Bozso, S. J., EL-Andari, R., Moon, M. C., Freed, D. H., Nagendran, J., & Nagendran, J. (2021). Sternal Bone Marrow Harvesting and Culturing Techniques from Patients Undergoing Cardiac Surgery. Micromachines, 12(8), 897. https://doi.org/10.3390/mi12080897