Preparation and Research of Monolayer WS2 FETs Encapsulated by h-BN Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of WS2 Material
2.2. Preparation of h-BN Material
2.3. Preparation of WS2/h-BN vdWs Vertical Heterostructure Material
2.4. Characterization Methods
3. Results and Discussion
3.1. Test Characterization of WS2 Material
3.2. Test Characterization of WS2/h-BN Vertical Heterostructure Material
3.3. Preparation and Test Characterization of FET Device with WS2/h-BN Vertical Heterostructure Material
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, W.; Kozawa, D.; Liu, Y.; Sheng, Y.; Wei, K.; Koman, V.B.; Wang, S.S.; Wang, X.C.; Jiang, T.; Strano, M.S.; et al. Determining the optimized interlayer separation distance in vertical stacked 2D WS2:hBN:MoS2 heterostructures for exciton energy transfer. Small 2018, 14, 1703727. [Google Scholar] [CrossRef]
- Ding, L.; Ukhtary, M.S.; Chubarov, M.; Choudhury, T.H.; Zhang, F.; Yang, R.; Zhang, A.; Fan, J.A.; Terrones, M.; Redwing, J.M.; et al. Understanding interlayer coupling in TMD-HBN heterostructure by Raman spectroscopy. IEEE Trans. Electron. Devices 2018, 65, 4059–4067. [Google Scholar] [CrossRef]
- Amani, M.; Chin, M.L.; Birdwell, A.G.; O’Regan, T.P.; Najmaei, S.; Liu, Z.; Ajayan, P.M.; Lou, J.; Dubey, M. Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition. Appl. Phys. Lett. 2013, 102, 193107. [Google Scholar] [CrossRef] [Green Version]
- Hoshi, Y.; Kuroda, T.; Okada, M.; Moriya, R.; Masubuchi, S.; Watanabe, K.; Taniguchi, T.; Kitaura, R.; Machida, T. Suppression of exciton-exciton annihilation in tungsten disulfide monolayers encapsulated by hexagonal boron nitrides. Phys. Rev. B 2017, 95, 241403. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Kozawa, D.; Zhou, Y.; Wang, Y.; Sheng, Y.; Jiang, T.; Strano, M.S.; Warner, J.H. Controlling Photoluminescence Enhancement and Energy Transfer in WS2:hBN:WS2 Vertical Stacks by Precis Interlayer Distances. Small 2020, 16, 1905985. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Kondo, T.; Ito, H.; Okada, M.; Shimizu, T.; Toshitaka, K.U.B.O.; Kitaura, R. Low frequency Raman study of interlayer couplings inWS2-MoS2 van derWaals heterostructures. Jpn. J. Appl. Phys. 2020, 59, 062004. [Google Scholar] [CrossRef]
- Han, T.; Liu, H.; Chen, S.; Chen, Y.; Wang, S.; Li, Z. Fabrication and Characterization of MoS2/h-BN and WS2/h-BN Heterostructures. Micromachines 2020, 11, 1114. [Google Scholar] [CrossRef] [PubMed]
- Zollner, K.; Junior, P.E.F.; Fabian, J. Giant proximity exchange and valley splitting in transition metal dichalcogenide/h-BN/(Co, Ni) heterostructures. Phys. Rev. B 2020, 101, 085112. [Google Scholar] [CrossRef] [Green Version]
- Okada, M.; Kutana, A.; Kureishi, Y.; Kobayashi, Y.; Saito, Y.; Saito, T.; Watanabe, K.; Taniguchi, T.; Gupta, S.; Miyata, Y.; et al. Direct and indirect interlayer excitons in a van der Waals heterostructure of hBN/WS2/MoS2/hBN. ACS Nano 2018, 12, 2498–2505. [Google Scholar] [CrossRef]
- Esqueda, I.S.; Tian, H.; Yan, X.; Wang, H. Transport properties and device prospects of ultrathin black phosphorus on hexagonal boron nitride. IEEE Trans. Electron. Devices 2017, 64, 5163–5171. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Y.; Erb, C.; Wang, K.; Moradifar, P.; Crespi, V.H.; Alem, N. Full orientation control of epitaxial MoS2 on hBN assisted by substrate defects. Phys. Rev. B 2019, 99, 155430. [Google Scholar] [CrossRef] [Green Version]
- Behura, S.; Nguyen, P.; Che, S.; Debbarma, R.; Berry, V. Large-area, transfer-free, oxide-assisted synthesis of hexagonal boron nitride films and their heterostructures with MoS2 and WS2. J. Am. Chem. Soc. 2015, 137, 13060–13065. [Google Scholar] [CrossRef]
- Athreya, N.; Leburton, J.P. Electronic Detection of Nucleotides in Multi-Layered MoS2-hBN Nanopore FET Devices. Biophys. J. 2020, 118, 157a. [Google Scholar] [CrossRef]
- Yang, H.; Gao, F.; Dai, M.; Jia, D.; Zhou, Y.; Hu, P. Recent advances in preparation, properties and device applications of two-dimensional h-BN and its vertical heterostructures. J. Semicond. 2017, 38, 031004. [Google Scholar] [CrossRef]
- Ahmed, T.; Bellare, P.; Debnath, R.; Roy, A.; Ravishankar, N.; Ghosh, A. Thermal History-Dependent Current Relaxation in hBN/MoS2 van derWaals Dimers. ACS Nano 2020, 14, 5909–5916. [Google Scholar] [CrossRef] [PubMed]
- Datye, I.M.; Gabourie, A.J.; English, C.D.; Smithe, K.K.; McClellan, C.J.; Wang, N.C.; Pop, E. Reduction of hysteresis in MoS2 transistors using pulsed voltage measurements. 2D Mater. 2018, 6, 011004. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Warner, J.H. All chemical vapor deposition growth of MoS2: H-BN vertical van der Waals heterostructures. ACS Nano 2015, 9, 5246–5254. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Liu, H.; Wang, S.; Chen, S.; Xie, H.; Yang, K. Probing the Field-Effect Transistor with Monolayer MoS2 Prepared by APCVD. Nanomaterials 2019, 9, 1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Ye, F.; Xu, J.; Zhang, W.; Feng, P.X.L.; Zhang, X. Gate-Tuned Temperature in a Hexagonal Boron Nitride-Encapsulated 2-D Semiconductor Device. IEEE Trans. Electron. Devices 2018, 65, 4068–4072. [Google Scholar] [CrossRef]
- Okada, M.; Sawazaki, T.; Watanabe, K.; Taniguch, T.; Hibino, H.; Shinohara, H.; Kitaura, R. Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. ACS Nano 2014, 8, 8273–8277. [Google Scholar] [CrossRef]
- Lin, M.-W.; Kravchenko, I.; Fowlkes, J.; Li, X.; Puretzky, A.; Rouleau, C.M.; Geohegan, D.B.; Xiao, K. Thickness-dependent charge transport in few-layer MoS2 field-effect transistors. Nanotechnology 2016, 27, 165203. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wang, X.; Zhang, T.-B.; Yang, W.; Chen, L.; Sun, Q.-Q.; Zhang, D.W. Improved integration of ultra-thin high-k dielectrics in few-layer MoS2 FET by remote forming gas plasma pretreatment. Appl. Phys. Lett. 2017, 110, 053110. [Google Scholar]
- Liu, H.; Neal, A.T.; Ye, P.D. Channel Length Scaling of MoS2 MOSFETs. ACS Nano 2012, 6, 8563–8569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Yao, Q.; Huang, C.-W.; Zou, X.; Liao, L.; Chen, S.; Fan, Z.; Zhang, K.; Wu, W.; Xiao, X.; et al. High Mobility MoS2 Transistor with Low Schottky Barrier Contact by Using Atomic Thick h-BN as a Tunneling Layer. Adv. Mater. 2016, 28, 8302–8308. [Google Scholar] [CrossRef]
- Di Bartolomeo, A.; Genovese, L.; Foller, T.; Giubileo, F.; Luongo, G.; Croin, L.; Liang, S.-J.; Ang, L.K.; Schleberger, M. Electrical transport and persistent photoconductivity in monolayer MoS2 phototransistors. Nanotechnology 2017, 28, 214002. [Google Scholar] [CrossRef] [Green Version]
- Chow, P.K.; Singh, E.; Viana, B.C.; Gao, J.; Luo, J.; Li, J.; Lin, Z.; Elías, A.L.; Shi, Y.; Wang, Z. Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates. ACS Nano 2015, 9, 3023–3031. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Liu, Q.; Gan, X.; Hu, M.; Zhang, T.; Li, C.; Kang, F.; Terrones, M.; Lv, R. Ultrasensitive Pressure Detection of Few-Layer MoS2. Adv. Mater. 2017, 29, 1603266. [Google Scholar] [CrossRef]
- Knobloch, T.; Illarionov, Y.Y.; Ducry, F.; Schleich, C.; Wachter, S.; Müller, T.; Waltl, M.; Lanza, M.; Vexler, M.I.; Luisier, M.; et al. On the suitability of hBN as an insulator for 2D material-based ultrascaled CMOS devices. Nat. Electron 2021, 4, 98–108. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, T.; Liu, H.; Chen, S.; Wang, S.; Yang, K. Preparation and Research of Monolayer WS2 FETs Encapsulated by h-BN Material. Micromachines 2021, 12, 1006. https://doi.org/10.3390/mi12091006
Han T, Liu H, Chen S, Wang S, Yang K. Preparation and Research of Monolayer WS2 FETs Encapsulated by h-BN Material. Micromachines. 2021; 12(9):1006. https://doi.org/10.3390/mi12091006
Chicago/Turabian StyleHan, Tao, Hongxia Liu, Shupeng Chen, Shulong Wang, and Kun Yang. 2021. "Preparation and Research of Monolayer WS2 FETs Encapsulated by h-BN Material" Micromachines 12, no. 9: 1006. https://doi.org/10.3390/mi12091006
APA StyleHan, T., Liu, H., Chen, S., Wang, S., & Yang, K. (2021). Preparation and Research of Monolayer WS2 FETs Encapsulated by h-BN Material. Micromachines, 12(9), 1006. https://doi.org/10.3390/mi12091006