Free Layer Thickness Dependence of the Stability in Co2(Mn0.6Fe0.4)Ge Heusler Based CPP-GMR Read Sensor for Areal Density of 1 Tb/in2
Abstract
:1. Introduction
2. CPP-GMR Modelling
3. Analysis of Read Head Response
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Takagishi, M.; Yamada, K.; Iwasaki, H.; Fuke, H.N.; Hashimoto, S. Magnetoresistance Ratio and Resistance Area Design of CPP-MR Film for 2–5 Tb/in2 Read Sensors. IEEE Trans. Magn. 2010, 46, 2086–2089. [Google Scholar] [CrossRef]
- Nagasaka, K. CPP-GMR technology for magnetic read heads of future high-density recording systems. J. Magn. Magn. Mater. 2009, 321, 508–511. [Google Scholar] [CrossRef]
- Childress, J.R.; Fontana, R.E. Magnetic recording read head sensor technology. Comptes Rendus Phys. 2005, 6, 997–1012. [Google Scholar] [CrossRef]
- Nakatani, T.; Gao, Z.; Hono, K. Read sensor technology for ultrahigh density magnetic recording. MRS Bull. 2018, 43, 106–111. [Google Scholar] [CrossRef]
- Khunkitti, P.; Siritaratiwat, A.; Kaewrawang, A.; Mewes, T.; Mewes, C.; Kruesubthaworn, A. Electromagnetic interference-induced instability in CPP-GMR read heads. J. Magn. Magn. Mater. 2016, 412, 42–48. [Google Scholar] [CrossRef]
- Pipathanapoompron, T.; Stankiewicz, A.; Wang, J.; Subramanian, K.; Kaewrawang, A. Magnetic reader testing for asymmetric oscillation noise. J. Magn. Magn. Mater. 2020, 514, 167064. [Google Scholar] [CrossRef]
- Takagishi, M.; Koi, K.; Yoshikawa, M.; Funayama, T.; Iwasaki, H.; Sahashi, M. The applicability of CPP-GMR heads for magnetic recording. IEEE Trans. Magn. 2002, 38, 2277–2282. [Google Scholar] [CrossRef]
- Diao, Z.; Chapline, M.; Zheng, Y.; Kaiser, C.; Roy, A.G.; Chien, C.; Shang, C.; Ding, Y.; Yang, C.; Mauri, D.; et al. Half-metal CPP GMR sensor for magnetic recording. J. Magn. Magn. Mater. 2013, 356, 73–81. [Google Scholar] [CrossRef]
- Childress, J.R.; Carey, M.J.; Maat, S.; Smith, N.; Fontana, R.E.; Druist, D.; Carey, K.; Katine, J.A.; Robertson, N.; Boone, T.D.; et al. All-Metal Current-Perpendicular-to-Plane Giant Magnetoresistance Sensors for Narrow-Track Magnetic Recording. IEEE Trans. Magn. 2007, 44, 90–94. [Google Scholar] [CrossRef]
- Surawanitkun, C.; Kaewrawang, A.; Siritaratiwat, A.; Kruesubthaworn, A.; Sivaratana, R.; Jutong, N.; Mewes, C.K.A.; Mewes, T. Magnetic Instability in Tunneling Magnetoresistive Heads Due to Temperature Increase During Electrostatic Discharge. IEEE Trans. Device Mater. Reliab. 2012, 12, 570–575. [Google Scholar] [CrossRef]
- Teso, B.; Kravenkit, S.; Sorn-In, K.; Kaewrawang, A.; Kruesubthaworn, A.; Siritaratiwat, A.; Mewes, T.; Mewes, C.; Surawanitkun, C. Temperature dependence of magnetic properties on switching energy in magnetic tunnel junction devices with tilted magnetization. Appl. Surf. Sci. 2019, 472, 36–39. [Google Scholar] [CrossRef]
- Surawanitkun, C.; Kaewrawang, A.; Siritaratiwat, A.; Kruesubthaworn, A.; Sivaratana, R.; Jutong, N.; Mewes, C.; Mewes, T. Modeling of switching energy of magnetic tunnel junction devices with tilted magnetization. J. Magn. Magn. Mater. 2015, 381, 220–225. [Google Scholar] [CrossRef]
- Teso, B.; Siritaratiwat, A.; Kaewrawang, A.; Kruesubthaworn, A.; Namvong, A.; Sainon, S.; Surawanitkun, C. Switching Performance Comparison with Low Switching Energy Due to Initial Temperature Increment in CoFeB/MgO-Based Single and Double Barriers. IEEE Trans. Electron Devices 2019, 66, 4062–4067. [Google Scholar] [CrossRef]
- Nakatani, T.M.; Hase, N.; Goripati, H.S.; Takahashi, Y.K.; Furubayashi, T.; Hono, K. Co-Based Heusler Alloys for CPP-GMR Spin-Valves with Large Magnetoresistive Outputs. IEEE Trans. Magn. 2012, 48, 1751–1757. [Google Scholar] [CrossRef]
- Nakatani, T.; Li, S.; Sakuraba, Y.; Furubayashi, T.; Hono, K. Advanced CPP-GMR Spin-Valve Sensors for Narrow Reader Applications. IEEE Trans. Magn. 2017, 54, 1–11. [Google Scholar] [CrossRef]
- Wen, Z.; Kubota, T.; Ina, Y.; Takanashi, K. Dual-spacer nanojunctions exhibiting large current-perpendicular-to-plane giant magnetoresistance for ultrahigh density magnetic recording. Appl. Phys. Lett. 2017, 110, 102401. [Google Scholar] [CrossRef]
- Du, Y.; Furubayashi, T.; Sasaki, T.T.; Sakuraba, Y.; Takahashi, Y.K.; Hono, K. Large magnetoresistance in current-perpendicular-to-plane pseudo spin-valves using Co2Fe(Ga0.5Ge0.5) Heusler alloy and AgZn spacer. Appl. Phys. Lett. 2015, 107, 112405. [Google Scholar] [CrossRef]
- Pradines, B.; Calmels, L.; Arras, R. Robustness of the Half-Metallicity at the Interfaces in Co2MnSi -Based All-Full-Heusler-Alloy Spintronic Devices. Phys. Rev. Appl. 2021, 15, 034009. [Google Scholar] [CrossRef]
- Kubota, T.; Wen, Z.; Takanashi, K. Current-perpendicular-to-plane giant magnetoresistance effects using Heusler alloys. J. Magn. Magn. Mater. 2019, 492, 165667. [Google Scholar] [CrossRef]
- Nakatani, T.; Sasaki, T.T.; Sakuraba, Y.; Hono, K. Improved current-perpendicular-to-plane giant magnetoresistance outputs by heterogeneous Ag-In:Mn-Zn-O nanocomposite spacer layer prepared from Ag-In-Zn-O precursor. J. Appl. Phys. 2019, 126, 173904. [Google Scholar] [CrossRef]
- Page, M.R.; Nakatani, T.M.; Stewart, D.A.; York, B.R.; Read, J.C.; Choi, Y.-S.; Childress, J.R. Temperature-dependence of current-perpendicular-to-the-plane giant magnetoresistance spin-valves using Co2(Mn1−xFex)Ge Heusler alloys. J. Appl. Phys. 2016, 119, 153903. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Nakatani, T.; Masuda, K.; Sakuraba, Y.; Xu, X.; Sasaki, T.; Tajiri, H.; Miura, Y.; Furubayashi, T.; Hono, K. Enhancement of current-perpendicular-to-plane giant magnetoresistive outputs by improving B2-order in polycrystalline Co2(Mn0.6Fe0.4)Ge Heusler alloy films with the insertion of amorphous CoFeBTa underlayer. Acta Mater. 2018, 142, 49–57. [Google Scholar] [CrossRef]
- Nakatani, T.; Sasaki, T.T.; Li, S.; Sakuraba, Y.; Furubayashi, T.; Hono, K. The microstructural origin of the enhanced current-perpendicular-to-the-plane giant magnetoresistance by Ag/In-Zn-O/Zn spacer layer. J. Appl. Phys. 2018, 124, 223904. [Google Scholar] [CrossRef]
- Han, G.C.; Qiu, J.J.; Wang, L.; Yeo, W.K.; Wang, C.C. Perspectives of Read Head Technology for 10 Tb/in2 Recording. IEEE Trans. Magn. 2010, 46, 709–714. [Google Scholar] [CrossRef]
- Stankiewicz, A.; Pipathanapoompron, T.; Subramanian, K.; Kaewrawang, A. Reader Noise Due to Thermally Driven Asymmetric Oscillations. IEEE Trans. Magn. 2018, 54, 1–5. [Google Scholar] [CrossRef]
- Khunkitti, P.; Kaewrawang, A.; Siritaratiwat, A.; Mewes, T.; Mewes, C.K.A.; Kruesubthaworn, A. A novel technique to detect effects of electromagnetic interference by electrostatic discharge simulator to test parameters of tunneling magnetoresistive read heads. J. Appl. Phys. 2015, 117, 17A908. [Google Scholar] [CrossRef]
- Kubota, T.; Ina, Y.; Wen, Z.; Narisawa, H.; Takanashi, K. Current perpendicular-to-plane giant magnetoresistance using an L12 Ag3 Mg spacer and Co2 Fe0.4 Mn0.6 Si Heusler alloy electrodes: Spacer thickness and annealing temperature dependence. Phys. Rev. Mater. 2017, 1, 4. [Google Scholar] [CrossRef]
- Nakatani, T.; Narayananellore, S.K.; Kumara, L.S.R.; Tajiri, H.; Sakuraba, Y.; Hono, K. Thickness dependence of degree of B2 order of polycrystalline Co2(Mn0.6Fe0.4)Ge Heusler alloy films measured by anomalous X-ray diffraction and its impacts on current-perpendicular-to-plane giant magnetoresistance properties. Scr. Mater. 2020, 189, 63–66. [Google Scholar] [CrossRef]
- Mewes, T.; Mewes, C.K.A. Matlab Based Micromagnetics Code M3. 2012. Available online: http://magneticslab.ua.edu/micromagnetics-code.html/ (accessed on 11 April 2021).
- Khunkitti, P.; Kruesubthaworn, A.; Kaewrawang, A.; Siritaratiwat, A. Unstable Playback Response of CPP-GMR Read Head Induced by Electromagnetic Interference: Structural Dependence. IEEE Trans. Magn. 2019, 55, 1–6. [Google Scholar] [CrossRef]
- Tipcharoen, W.; Kaewrawang, A.; Siritaratiwat, A. Design and Micromagnetic Simulation of Fe/L10-FePt/Fe Trilayer for Exchange Coupled Composite Bit Patterned Media at Ultrahigh Areal Density. Adv. Mater. Sci. Eng. 2015, 2015, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Pituso, K.; Kaewrawang, A.; Buatong, P.; Siritaratiwat, A.; Kruesubthaworn, A. The temperature and electromagnetic field distributions of heat-assisted magnetic recording for bit-patterned media at ultrahigh areal density. J. Appl. Phys. 2015, 117, 17C501. [Google Scholar] [CrossRef]
- Macwilliams, F.J.; Sloane, N.J.A. Pseudo Random Sequences and Arrays. Proc. IEEE 1976, 64, 1715–1729. [Google Scholar] [CrossRef]
- Slonczewski, J. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 1996, 159, L1–L7. [Google Scholar] [CrossRef]
- Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 1996, 54, 9353–9358. [Google Scholar] [CrossRef] [Green Version]
- Kovintavewat, P.; Ozgunes, I.; Kurtas, E.; Barry, J.; McLaughlin, S. Generalized partial-response targets for perpendicular recording with jitter noise. IEEE Trans. Magn. 2002, 38, 2340–2342. [Google Scholar] [CrossRef]
- Eppler, W.; Ozgunes, I. Channel characterization methods using dipulse extraction. IEEE Trans. Magn. 2006, 42, 176–181. [Google Scholar] [CrossRef]
- Van Der Heijden, P.A.A.; Karns, D.W.; Clinton, T.W.; Heinrich, S.J.; Batra, S.; Karns, D.C.; Roscamp, T.A.; Boerner, E.D.; Eppler, W.R. The effect of media background on reading and writing in perpendicular recording. J. Appl. Phys. 2002, 91, 8372. [Google Scholar] [CrossRef]
- McMichael, R.; Stiles, M. Magnetic normal modes of nanoelements. J. Appl. Phys. 2005, 97, 10J901. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khunkitti, P.; Siritaratiwat, A.; Pituso, K. Free Layer Thickness Dependence of the Stability in Co2(Mn0.6Fe0.4)Ge Heusler Based CPP-GMR Read Sensor for Areal Density of 1 Tb/in2. Micromachines 2021, 12, 1010. https://doi.org/10.3390/mi12091010
Khunkitti P, Siritaratiwat A, Pituso K. Free Layer Thickness Dependence of the Stability in Co2(Mn0.6Fe0.4)Ge Heusler Based CPP-GMR Read Sensor for Areal Density of 1 Tb/in2. Micromachines. 2021; 12(9):1010. https://doi.org/10.3390/mi12091010
Chicago/Turabian StyleKhunkitti, Pirat, Apirat Siritaratiwat, and Kotchakorn Pituso. 2021. "Free Layer Thickness Dependence of the Stability in Co2(Mn0.6Fe0.4)Ge Heusler Based CPP-GMR Read Sensor for Areal Density of 1 Tb/in2" Micromachines 12, no. 9: 1010. https://doi.org/10.3390/mi12091010
APA StyleKhunkitti, P., Siritaratiwat, A., & Pituso, K. (2021). Free Layer Thickness Dependence of the Stability in Co2(Mn0.6Fe0.4)Ge Heusler Based CPP-GMR Read Sensor for Areal Density of 1 Tb/in2. Micromachines, 12(9), 1010. https://doi.org/10.3390/mi12091010