Femtosecond-Laser-Ablation Dynamics in Silicon Revealed by Transient Reflectivity Change
Abstract
:1. Introduction
2. Pump-Probe Imaging System
3. Results and Analysis
3.1. Ablation Dynamics Observation and Analysis
3.2. Analysis of Electron-Hole (e–h) Plasma Generation
3.2.1. Two Temperature Model to Explain Plasma Generation
3.2.2. Drude Model to Explain the Reflectivity Change with Plasma Density
3.3. Analysis for the Saturation of Reflectivity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chichkov, B.N.; Momma, C.; Nolte, S.; von Alvensleben, F.; Tunnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 1996, 63, 109–115. [Google Scholar] [CrossRef]
- Hennig, G.; Selbmann, K.H.; Brockelt, A. Laser engraving in gravure industry. Proc. SPIE 2005, 6157, 61570C. [Google Scholar]
- Ancona, A.; Roser, F.; Rademaker, K.; Limpert, J.; Nolte, S.; Tunnermann, A. High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system. Opt. Express 2008, 16, 8958–8968. [Google Scholar] [CrossRef]
- Vogel, A.; Noack, J.; Huttman, G.; Paltauf, G. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B Lasers Opt. 2005, 81, 1015–1047. [Google Scholar] [CrossRef]
- Grewal, D.S.; Schultz, T.; Basti, S.; Dick, H.B. Femtosecond laser-assisted cataract surgery-current status and future directions. Surv. Ophthalmol. 2016, 61, 103–131. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.H.; Lee, R.T.; Lin, W.H.; Liao, Y.S. Selective laser sintering of bio-metal scaffold. Proc. CIRP 2013, 5, 83–87. [Google Scholar] [CrossRef] [Green Version]
- Shank, C.V.; Yen, R.; Hirlimann, C. Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse Induced Phase-Transitions in Silicon. Phys. Rev. Lett. 1983, 50, 454–457. [Google Scholar] [CrossRef]
- Downer, M.C.; Fork, R.L.; Shank, C.V. Femtosecond Imaging of Melting and Evaporation at a Photoexcited Silicon Surface. J. Opt. Soc. Am. B 1985, 2, 595–599. [Google Scholar] [CrossRef]
- Sokolowski-Tinten, K.; von der Linde, D. Generation of dense electron-hole plasmas in silicon. Phys. Rev. B 2000, 61, 2643–2650. [Google Scholar] [CrossRef] [Green Version]
- von der Linde, D.; Sokolowski-Tinten, K. The physical mechanisms of short-pulse laser ablation. Appl. Surf. Sci. 2000, 154, 1–10. [Google Scholar] [CrossRef]
- Bonse, J.; Baudach, S.; Kruger, J.; Kautek, W.; Lenzner, M. Femtosecond laser ablation of silicon-modification thresholds and morphology. Appl. Phys. A 2002, 74, 19–25. [Google Scholar] [CrossRef]
- Bonse, J.; Brzezinka, K.W.; Meixner, A.J. Modifying single-crystalline silicon by femtosecond laser pulses: An analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy. Appl. Surf. Sci. 2004, 221, 215–230. [Google Scholar] [CrossRef]
- Zeng, X.; Mao, X.L.; Greif, R.; Russo, R.E. Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon. Appl. Phys. A 2005, 80, 237–241. [Google Scholar] [CrossRef]
- Thorstensen, J.; Foss, S.E. Temperature dependent ablation threshold in silicon using ultrashort laser pulses. J. Appl. Phys. 2012, 112, 103514. [Google Scholar] [CrossRef]
- Moser, R.; Domke, M.; Winter, J.; Huber, H.P.; Marowsky, G. Single pulse femtosecond laser ablation of silicon—A comparison between experimental and simulated two-dimensional ablation profiles. Adv. Opt. Technol. 2018, 7, 255–264. [Google Scholar] [CrossRef]
- Sokolowski-Tinten, K.; Bialkowski, J.; Cavalleri, A.; Boing, M.; Schuler, H.; von der Linde, D. Dynamics of femtosecond laser induced ablation from solid surfaces. Proc. SPIE 1998, 3343, 46–57. [Google Scholar]
- Sokolowski-Tinten, K.; Bialkowski, J.; Cavalleri, A.; von der Linde, D.; Oparin, A.; Meyer-ter-Vehn, J.; Anisimov, S.I. Transient states of matter during short pulse laser ablation. Phys. Rev. Lett. 1998, 81, 224–227. [Google Scholar] [CrossRef] [Green Version]
- Siders, C.W.; Cavalleri, A.; Sokolowski-Tinten, K.; Toth, C.; Guo, T.; Kammler, M.; von Hoegen, M.H.; Wilson, K.R.; von der Linde, D.; Barty, C.P.J. Detection of nonthermal melting by ultrafast X-ray diffraction. Science 1999, 286, 1340–1342. [Google Scholar] [CrossRef]
- Cavalleri, A.; Siders, C.W.; Brown, F.L.H.; Leitner, D.M.; Toth, C.; Squier, J.A.; Barty, C.P.J.; Wilson, K.R.; Sokolowski-Tinten, K.; von Hoegen, M.H.; et al. Anharmonic lattice dynamics in germanium measured with ultrafast X-ray diffraction. Phys. Rev. Lett. 2000, 85, 586–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rousse, A.; Rischel, C.; Fourmaux, S.; Uschmann, I.; Sebban, S.; Grillon, G.; Balcou, P.; Foster, E.; Geindre, J.P.; Audebert, P.; et al. Non-thermal melting in semiconductors measured at femtosecond resolution. Nature 2001, 410, 65–68. [Google Scholar] [CrossRef]
- Bonse, J.; Bachelier, G.; Siegel, J.; Solis, J. Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium. Phys. Rev. B 2006, 74, 134106. [Google Scholar] [CrossRef] [Green Version]
- Bonse, J.; Bachelier, G.; Siegel, J.; Solis, J.; Sturm, H. Time- and space-resolved dynamics of ablation and optical breakdown induced by femtosecond laser pulses in indium phosphide. J. Appl. Phys. 2008, 103, 054910. [Google Scholar] [CrossRef]
- Puerto, D.; Gawelda, W.; Siegel, J.; Bonse, J.; Bachelier, G.; Solis, J. Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses. Appl. Phys. A 2008, 92, 803–808. [Google Scholar] [CrossRef] [Green Version]
- Puerto, D.; Siegel, J.; Gawelda, W.; Galvan-Sosa, M.; Ehrentraut, L.; Bonse, J.; Solis, J. Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics. J. Opt. Soc. Am. B 2010, 27, 1065–1076. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Rueda, J.; Puerto, D.; Siegel, J.; Galvan-Sosa, M.; Solis, J. Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz. Appl. Surf. Sci. 2012, 258, 9389–9393. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Lechuga, M.; Solis, J.; Siegel, J. Key stages of material expansion in dielectrics upon femtosecond laser ablation revealed by double-color illumination time-resolved microscopy. Appl. Phys. A 2018, 124, 221. [Google Scholar] [CrossRef]
- McDonald, J.P.; Nees, J.A.; Yalisove, S.M. Pump-probe imaging of femtosecond pulsed laser ablation of silicon with thermally grown oxide films. J. Appl. Phys. 2007, 102, 063109. [Google Scholar] [CrossRef]
- Rapp, S.; Schmidt, M.; Huber, H.P. Selective femtosecond laser structuring of dielectric thin films with different band gaps: A time-resolved study of ablation mechanisms. Appl. Phys. A 2016, 122, 1–13. [Google Scholar] [CrossRef]
- Choi, T.Y.; Grigoropoulos, C.P. Plasma and ablation dynamics in ultrafast laser processing of crystalline silicon. J. Appl. Phys. 2002, 92, 4918–4925. [Google Scholar] [CrossRef]
- Taylor, L.L.; Scott, R.E.; Qiao, J. Integrating two-temperature and classical heat accumulation models to predict femtosecond laser processing of silicon. Opt. Mater. Express 2018, 8, 648–658. [Google Scholar] [CrossRef]
- Liu, J.M. Simple Technique for Measurements of Pulsed Gaussian-Beam Spot Sizes. Opt. Lett. 1982, 7, 196–198. [Google Scholar] [CrossRef]
- Stojanovic, N.; von der Linde, D.; Sokolowski-Tinten, K.; Zastrau, U.; Perner, F.; Forster, E.; Sobierajski, R.; Nietubyc, R.; Jurek, M.; Klinger, D.; et al. Ablation of solids using a femtosecond extreme ultraviolet free electron laser. Appl. Phys. Lett. 2006, 89, 241909. [Google Scholar] [CrossRef] [Green Version]
- Werner, K.; Gruzdev, V.; Talisa, N.; Kafka, K.; Austin, D.; Liebig, C.M.; Chowdhury, E. Single-Shot Multi-Stage Damage and Ablation of Silicon by Femtosecond Mid-infrared Laser Pulses. Sci Rep. 2019, 9, 19993. [Google Scholar] [CrossRef]
- Pflug, T.; Olbrich, M.; Winter, J.; Schille, J.; Löschner, U.; Huber, H.; Horn, A. Fluence-Dependent Transient Reflectance of Stainless Steel Investigated by Ultrafast Imaging Pump–Probe Reflectometry. J. Phys. Chem. C 2021, 125, 17363–17371. [Google Scholar] [CrossRef]
- Helmenstine, A.M. Silicon Facts (Atomic Number 14 or Si). Available online: Thoughtco.com/silicon-facts-606595 (accessed on 3 September 2021).
- Choi, T.Y.; Grigoropoulos, C.P. Observation of femtosecond laser-induced ablation in crystalline silicon. J. Heat Trans. 2004, 126, 723–726. [Google Scholar] [CrossRef]
- Hecht, E. Optics, Global ed.; Borthakur, M., Tiwari, V., Eds.; Pearson Education Limited: Essex, UK, 2017; pp. 123–126. [Google Scholar]
- Sik, J.; Hora, J.; Humlicek, J. Optical functions of silicon at high temperatures. J. Appl. Phys. 1998, 84, 6291–6298. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, T.; Chen, G.; Han, H.; Qiao, J. Femtosecond-Laser-Ablation Dynamics in Silicon Revealed by Transient Reflectivity Change. Micromachines 2022, 13, 14. https://doi.org/10.3390/mi13010014
Feng T, Chen G, Han H, Qiao J. Femtosecond-Laser-Ablation Dynamics in Silicon Revealed by Transient Reflectivity Change. Micromachines. 2022; 13(1):14. https://doi.org/10.3390/mi13010014
Chicago/Turabian StyleFeng, Tao, Gong Chen, Hainian Han, and Jie Qiao. 2022. "Femtosecond-Laser-Ablation Dynamics in Silicon Revealed by Transient Reflectivity Change" Micromachines 13, no. 1: 14. https://doi.org/10.3390/mi13010014