Three-Dimensional Soft Material Micropatterning via Grayscale Photolithography for Improved Hydrophobicity of Polydimethylsiloxane (PDMS)
Abstract
:1. Introduction
2. Background of Hydrophobic Properties
3. Materials and Method
3.1. Materials
3.2. Development of PDMS Surface Wettability Modification
3.2.1. Design Parameter of Array of Microstructure
3.2.2. Grayscale Mold Fabrication Method
3.2.3. SU8-10 Mold Fabrication
3.2.4. Double Stamping PDMS Relief Fabrication Method
3.3. Water Contact Angle Measurement
4. Results and Discussion
4.1. Hydrophobic PDMS
4.2. Super Hydrophobic PDMS
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gong, W.; Shen, J.; Dai, W.; Deng, Z.; Dong, X.; Gong, M. Effects of slip length and hydraulic diameter on hydraulic entrance length of microchannels with superhydrophobic surfaces. Front. Energy 2020, 14, 127–138. [Google Scholar] [CrossRef]
- Wang, H.; Chen, L.; Sun, L. Digital microfluidics: A promising technique for biochemical applications. Front. Mech. Eng. 2017, 12, 510–525. [Google Scholar] [CrossRef]
- Ai, Y.; Xie, R.; Xiong, J.; Liang, Q. Microfluidics for biosynthesizing: From droplets and vesicles to artificial cells. Small 2020, 16, 1903940. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Ueda, E.; Levkin, P.A. Droplet Microarrays: From Surface Patterning to High-Throughput Applications. Adv. Mater. 2018, 30, 1706111. [Google Scholar] [CrossRef]
- Chiu, D.T.; Demello, A.J.; Di Carlo, D.; Doyle, P.S.; Hansen, C.; Maceiczyk, R.M.; Wootton, R.C. Small but perfectly formed? Successes, challenges, and opportunities for microfluidics in the chemical and biological sciences. Chem 2018, 2, 201–223. [Google Scholar] [CrossRef] [Green Version]
- Yeo, J.; Choi, M.J.; Kim, D.S. Robust hydrophobic surfaces with various micropillar arrays. J. Micromech. Microeng. 2010, 20, 025028. [Google Scholar] [CrossRef]
- Gao, J.; Zhao, J.; Liu, L.; Xue, W. Dimensional effects of polymer pillar arrays on hydrophobicity. Surf. Eng. 2016, 32, 125–131. [Google Scholar] [CrossRef]
- Seo, J.; Lee, S.K.; Lee, J.; Lee, J.S.; Kwon, H.; Cho, S.W.; Ahn, J.H.; Lee, T. Path-programmable water droplet manipulations on an adhesion controlled superhydrophobic surface. Sci. Rep. 2015, 5, 12326. [Google Scholar] [CrossRef] [PubMed]
- Dy, A.J.; Cosmanescu, A.; Sluka, J.; Glazier, J.A.; Stupack, D.; Amarie, D. Fabricating microfluidic valve master molds in SU-8 photoresist. J. Micromech. Microeng. 2014, 24, 057001. [Google Scholar] [CrossRef] [Green Version]
- Chukwuonu, E.E. Improving the Hydrophobicity of Polymers through Surface Modification and Investigating its Effect on Surface Damage Resistance. Ph.D. Thesis, Texas A&M University-Kingsville, Kingsville, TX, USA, 2019. [Google Scholar]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Lu, N.; Zhang, W.; Weng, Y.; Chen, X.; Cheng, Y.; Zhou, P. Fabrication of PDMS surfaces with micro patterns and the effect of pattern sizes on bacteria adhesion. Food Control 2016, 68, 344–351. [Google Scholar] [CrossRef]
- Kameya, Y. Wettability modification of polydimethylsiloxane surface by fabricating micropillar and microhole arrays. Mater. Lett. 2017, 196, 320–323. [Google Scholar] [CrossRef]
- Rengarajan, V.; Geng, J.; Huang, Y. Fabrication of tapered 3D microstructure arrays using dual-exposure lithography (DEL). Micromachines 2020, 11, 903. [Google Scholar] [CrossRef]
- Xia, Y.; Whitesides, G.M. Soft lithography. Annu. Rev. Mater. Sci. 1998, 28, 153–184. [Google Scholar] [CrossRef]
- Abdul Hamid, I.S.L.; Khi Khim, B.; Sal Hamid, S.; Abd Rahman, M.F.; Abd Manaf, A. Implementation of a Single Emulsion Mask for Three-Dimensional (3D) Microstructure Fabrication of Micromixers using the Grayscale Photolithography Technique. Micromachines 2020, 11, 548. [Google Scholar] [CrossRef]
- Wang, G.; Jia, Z.H.; Yang, H.N. Stability of a water droplet on micropillared hydrophobic surfaces. Colloid Polym. Sci. 2016, 294, 851–858. [Google Scholar] [CrossRef]
- Rohrs, C.; Azimi, A.; He, P. Wetting on micropatterned surfaces: Partial penetration in the Cassie State and Wenzel deviation theoretically explained. Langmuir 2019, 35, 15421–15430. [Google Scholar] [CrossRef]
- Okulova, N.; Johansen, P.; Christensen, L.; Taboryski, R. Effect of structure hierarchy for superhydrophobic polymer surfaces studied by droplet evaporation. Nanomaterials 2018, 8, 831. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.; Byun, J.H.; Na, S.; Jeon, N.L. Fabrication of functional 3D multi-level microstructures on transparent substrates by one step back-side UV photolithography. RSC Adv. 2017, 7, 13353–13361. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.M. Role of wide tip of mushroom-like micropillar arrays to make the Cassie state on superrepellent surfaces. RSC Adv. 2016, 6, 74670–74674. [Google Scholar] [CrossRef]
Pillar Width (μm) | SU8-10 Micropillar Height (μm) | PDMS Micropillar Height (μm) |
---|---|---|
80 | 22.53 | 17.31 |
100 | 47.04 | 45.39 |
200 | 72.24 | 63.33 |
Pillar Width (μm) | Fraction, f = | Contact Angle of Rough Surface, |
---|---|---|
80 | ||
100 | ||
200 | ||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamid, I.S.L.A.; Khi Khim, B.; Mohamed Omar, M.F.; Mohamad Zain, K.A.; Abd Rhaffor, N.; Sal Hamid, S.; Abd Manaf, A. Three-Dimensional Soft Material Micropatterning via Grayscale Photolithography for Improved Hydrophobicity of Polydimethylsiloxane (PDMS). Micromachines 2022, 13, 78. https://doi.org/10.3390/mi13010078
Hamid ISLA, Khi Khim B, Mohamed Omar MF, Mohamad Zain KA, Abd Rhaffor N, Sal Hamid S, Abd Manaf A. Three-Dimensional Soft Material Micropatterning via Grayscale Photolithography for Improved Hydrophobicity of Polydimethylsiloxane (PDMS). Micromachines. 2022; 13(1):78. https://doi.org/10.3390/mi13010078
Chicago/Turabian StyleHamid, Intan Sue Liana Abdul, Beh Khi Khim, Mohammad Faiz Mohamed Omar, Khairu Anuar Mohamad Zain, Nuha Abd Rhaffor, Sofiyah Sal Hamid, and Asrulnizam Abd Manaf. 2022. "Three-Dimensional Soft Material Micropatterning via Grayscale Photolithography for Improved Hydrophobicity of Polydimethylsiloxane (PDMS)" Micromachines 13, no. 1: 78. https://doi.org/10.3390/mi13010078
APA StyleHamid, I. S. L. A., Khi Khim, B., Mohamed Omar, M. F., Mohamad Zain, K. A., Abd Rhaffor, N., Sal Hamid, S., & Abd Manaf, A. (2022). Three-Dimensional Soft Material Micropatterning via Grayscale Photolithography for Improved Hydrophobicity of Polydimethylsiloxane (PDMS). Micromachines, 13(1), 78. https://doi.org/10.3390/mi13010078