Synthesised Conductive/Magnetic Composite Particles for Magnetic Ablations of Tumours
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Composite Particles
2.2. Particle Geometry
2.3. Magnetics in Particle Scales
2.4. X-ray Diffraction (XRD) Analysis
2.5. Magnetic Characteristics
2.6. In Vitro Tests of AC-Magnetic-Field-Induced Heat Generation
2.7. Cell Line
2.8. In Vivo Tumour Tests
2.9. X-ray Imaging
2.10. Hematoxylin and Eosin Staining
2.11. Statistical Analysis
3. Results
3.1. Geometries and Composition Studies
3.2. Magnetic Studies of DC Magnetisation and AC Magnetic Field Induction Heat
3.3. Intra- and Post-Treatment
3.4. Stained Tumour Tissue
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Almoshari, Y. Development, Therapeutic Evaluation and Theranostic Applications of Cubosomes on Cancers: An Updated Review. Pharmaceutics 2022, 14, 600. [Google Scholar] [CrossRef]
- Kasibhatla, S.; Tseng, B. Why target apoptosis in cancer treatment? Mol. Cancer. Ther. 2003, 2, 573–580. [Google Scholar] [PubMed]
- Naoum, G.E.; Morkos, M.; Kim, B.; Arafat, W. Novel targeted therapies and immunotherapy for advanced thyroid cancers. Mol. Cancer 2018, 17, 51. [Google Scholar] [CrossRef] [PubMed]
- Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci. 2012, 9, 193–199. [Google Scholar] [CrossRef]
- Couzin-Frankel, J. Breakthrough of the year 2013. Cancer immunotherapy. Science 2013, 342, 1432. [Google Scholar] [CrossRef] [PubMed]
- Chabner, B.A.; Roberts, T.G., Jr. Timeline: Chemotherapy and the war on cancer. Nat. Rev. Cancer 2005, 5, 65. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Mulier, S.; Miao, Y.; Michel, L.; Marchal, G. A review of the general aspects of radiofrequency ablation. Abdom. Imaging 2005, 30, 381. [Google Scholar] [CrossRef]
- Lencioni, R.; Crocetti, L. Radiofrequency ablation of liver cancer. Tech. Vasc. Interv. Radiol. 2007, 10, 38. [Google Scholar] [CrossRef]
- Tatli, S.; Tapan, U.; Morrison, P.R.; Silverman, S.G. Radiofrequency ablation: Technique and clinical applications. Diagn. Interv. Radiol. 2012, 18, 508. [Google Scholar] [CrossRef]
- Simon, C.J.; Dupuy, D.E.; Mayo-Smith, W.W. Microwave ablation: Principles and applications. Radiographics 2005, 25 (Suppl. 1), S69. [Google Scholar] [CrossRef]
- Wei, Q.; Arami, H.; Santos, H.A.; Zhang, H.; Li, Y.; He, J.; Zhong, D.; Ling, D.; Zhou, M. Intraoperative Assessment and Photothermal Ablation of the Tumor Margins Using Gold Nanoparticles. Adv. Sci. 2021, 8, 2002788. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, K.L.; Frias, I.A.M.; Franco, O.L.; Dias, S.C.; Sousa-Junior, A.A.; Silva, O.N.; Bakuzis, A.F.; Oliveira, M.D.L.; Andrade, C.A.S. Clavanin A-bioconjugated Fe3O4/Silane core-shell nanoparticles for thermal ablation of bacterial biofilms. Colloids Surf. B Biointerfaces 2018, 169, 72. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, F.; Zheng, K.; Deng, L.; Yang, L.; Zhang, N.; Xu, C.; Ran, H.; Wang, Z.; Wang, Z.; et al. Injectable PLGA/Fe3O4 implants carrying cisplatin for synergistic magnetic hyperthermal ablation of rabbit VX2 tumor. PLoS ONE 2017, 12, e0177049. [Google Scholar] [CrossRef] [PubMed]
- Moroz, P.; Jones, S.K.; Gray, B.N. Status of hyperthermia in the treatment of advanced liver cancer. J. Surg. Oncol. 2001, 77, 259. [Google Scholar] [CrossRef] [PubMed]
- Coïssona, M.; Barreraab, G.; Celegatoa, F.; Martinoa, L.; Vinaia, F.; Martinoc, P.; Ferrarod, G.; Tibertoa, P. Specific absorption rate determination of magnetic nanoparticles through hyperthermia measurements in non-adiabatic conditions. J. Magn. Magn. Mater. 2016, 415, 2. [Google Scholar] [CrossRef]
- Chandrasekharan, P.; Tay, Z.W.; Hensley, D.; Zhou, X.Y.; Fung, B.K.L.; Colson, C.; Lu, Y.; Fellows, B.D.; Huynh, Q.; Saayujya, C.; et al. Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: Tracers, hardware, and future medical applications. Theranostics 2020, 10, 2965. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Liang, B.; Zheng, Y.; Exner, A.; Kolios, M.; Xu, T.; Guo, D.; Cai, X.; Wang, Z.; Ran, H.; et al. PMMA-Fe3O4 for internal mechanical support and magnetic thermal ablation of bone tumors. Theranostics 2019, 9, 4192. [Google Scholar] [CrossRef]
- Hilger, I.; Hiergeist, R.; Hergt, R.; Winnefeld, K.; Schubert, H.; Kaiser, W.A. Thermal ablation of tumors using magnetic nanoparticles: An in vivo feasibility study. Investig. Radiol. 2002, 37, 580. [Google Scholar] [CrossRef]
- Garc’ıa-Jimeno, S.; Ortega-Palacios, R.; Cepeda-Rubio, M.F.J.; Vera, A.; Leija, L.; Estelrich, J. Improved thermal ablation efficacy using magnetic nanoparticles: A study in tumor phantoms. Prog. Electromagn. Res. 2012, 128, 229–248. [Google Scholar] [CrossRef]
- Kurlyandskaya, G.V.; Litvinova, L.S.; Safronov, A.P.; Schupletsova, V.V.; Tyukova, I.S.; Khaziakhmatova, O.G.; Slepchenko, G.B.; Kristina, A.Y.; Cherempey, E.G.; Kulesh, N.A.; et al. Water-Based Suspensions of Iron Oxide Nanoparticles with Electrostatic or Steric Stabilization by Chitosan: Fabrication, Characterization and Biocompatibility. Sensors 2017, 17, 2605. [Google Scholar] [CrossRef] [Green Version]
- Chieh, J.J.; Wei, W.C.; Liao, S.H.; Chen, H.H.; Lee, Y.F.; Lin, F.C.; Chiang, M.H.; Chiu, M.J.; Horng, H.E.; Yang, S.Y. Eight-Channel AC Magnetosusceptometer of Magnetic Nanoparticles for High-Throughput and Ultra-High-Sensitivity Immunoassay. Sensors 2018, 18, 1043. [Google Scholar] [CrossRef] [PubMed]
- Grossman, J.H.; McNeil, S.E. Nanotechnology in Cancer Medicine. Phys. Today 2012, 65, 38. [Google Scholar] [CrossRef]
- Huang, K.W.; Chieh, J.J.; Yeh, C.K.; Liao, S.H.; Lee, Y.Y.; Hsiao, P.Y.; Wei, W.C.; Yang, H.C.; Horng, H.E. Ultrasound-Induced Magnetic Imaging of Tumors Targeted by Biofunctional Magnetic Nanoparticles. ACS Nano 2017, 11, 3030. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.W.; Chiang, M.H.; Wei, W.C.; Liao, S.H.; Liu, Y.B.; Huang, K.C.; Chen, K.L.; Kuo, W.C.; Sung, Y.C.; Chen, T.Y.; et al. Highly efficient magnetic ablation and the contrast of various imaging using biocompatible liquid-metal gallium. Biomed. Eng. Online 2022, 21, 48. [Google Scholar] [CrossRef]
- Behrouzkia, Z.; Joveini, Z.; Keshavarzi, B.; Eyvazzadeh, N.; Aghdam, R.Z. Hyperthermia: How Can It Be Used? Oman. Med. J. 2016, 31, 89. [Google Scholar] [CrossRef]
- Hergt, R.; Dutz, S. Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. J. Magn. Magn. Mater. 2007, 311, 187. [Google Scholar] [CrossRef]
- Atkinson, W.J.; Brezovich, I.A.; Chakraborty, D.P. Usable frequencies in hyperthermia with thermal seeds. IEEE Trans. Biomed. Eng. 1984, 31, 70. [Google Scholar] [CrossRef]
- Tong, S.; Quinto, C.A.; Zhang, L.; Mohindra, P.; Bao, G. Size-dependent heating of magnetic iron oxide nanoparticles. ACS Nano 2017, 11, 6808. [Google Scholar] [CrossRef]
- Zrínyi, M.; Barsi, L.; Büki, A. Ferrogel: A new magneto-controlled elastic medium. Polymer Gels Networks 1997, 5, 415. [Google Scholar] [CrossRef]
- Blyakhman, F.A.; Buznikov, N.A.; Sklyar, T.F.; Safronov, A.P.; Golubeva, E.V.; Svalov, A.V.; Sokolov, S.Y.; Melnikov, G.Y.; Orue, I.; Kurlyandskaya, G.V. Mechanical, Electrical and Magnetic Properties of Ferrogels with Embedded Iron Oxide Nanoparticles Obtained by Laser Target Evaporation: Focus on Multifunctional Biosensor Applications. Sensors 2018, 18, 872. [Google Scholar] [CrossRef] [Green Version]
- Dudley, H.C.; Munn, J.I.; Henry, K.E. Studies of the metabolism of gallium. J. Pharmacol. Exp. Ther. 1950, 98, 105. [Google Scholar] [PubMed]
- Edwards, C.L.; Hayes, R.L. Tumor scanning with 67Ga citrate. J. Nucl. Med. 1967, 10, 103. [Google Scholar]
- Xie, W.; Allioux, F.M.; Ou, J.Z.; Miyako, E.; Tang, S.Y.; Kalantar-Zadeh, K. Gallium-Based Liquid Metal Particles for Therapeutics. Trends Biotechnol. 2021, 39, 624. [Google Scholar] [CrossRef] [PubMed]
- Elbourne, A.; Cheeseman, S.; Atkin, P.; Truong, N.P.; Syed, N.; Zavabeti, A.; Mohiuddin, M.; Esrafilzadeh, D.; Cozzolino, D.; McConville, C.F. Antibacterial Liquid Metals: Biofilm Treatment via Magnetic Activation. ACS Nano 2020, 14, 802. [Google Scholar] [CrossRef]
- Gomez, R.D.; Burke, E.R.; Mayergoyz, I.D. Magnetic imaging in the presence of external fields: Technique and applications (invited). J. Appl. Phys. 1996, 79, 6441. [Google Scholar] [CrossRef]
- Scherrer, P. Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften, Göttingen. Math.-Phys. Kl. 1918, 2, 98. [Google Scholar]
- Foner, S. Versatile and Sensitive Vibrating-Sample Magnetomete. Rev. Sci. Instrum. 1959, 30, 548. [Google Scholar] [CrossRef]
- Bayerl, T.; Duhovic, M.; Mitschang, P.; Bhattacharyya, D. The heating of polymer composites by electromagnetic induction–A review. Compos. Part A Appl. Sci. 2014, 57, 27. [Google Scholar] [CrossRef]
- Tomayko, M.M.; Reynolds, C.P. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother. Pharmacol. 1989, 24, 148. [Google Scholar] [CrossRef]
- Sifford, J.; Walsh, K.J.; Tong, S.; Bao, G.; Agarwal, G. Indirect magnetic force microscopy. Nanoscale Adv. 2019, 1, 2348–2355. [Google Scholar] [CrossRef]
- Ramachandranab, J.S.; Bhagatab, S.M.; Pengab, J.L.; Rubinstein, M. FMR of powder La0.7Ca0.3MnO3. Solid State Commun. 1995, 96, 127. [Google Scholar] [CrossRef]
- Kötitz, R.; Weitschies, W.; Trahms, L.; Brewer, W.; Semmler, W. Determination of the binding reaction between avidin and biotin by relaxation measurements of magnetic nanoparticles. J. Magn. Magn. Mater. 1999, 194, 62. [Google Scholar] [CrossRef]
- Safronov, A.P.; Beketov, I.V.; Komogortsev, S.V.; Kurlyandskaya, G.V.; Medvedev, A.I.; Leiman, D.V.; Larranaga, A.; Bhagat, S.M. Spherical magnetic nanoparticles fabricated by laser target evaporation. AIP Adv. 2013, 3, 052135. [Google Scholar] [CrossRef]
- Rathke, H.; Hamm, B.; Guttler, F.; Rathke, J.; Rump, J.; Teichgraber, U.; de Bucourt, M. Comparison of four radiofrequency ablation systems at two target volumes in an ex vivo bovine liver model. Diagn. Interv. Radiol. 2014, 20, 251. [Google Scholar] [CrossRef] [PubMed]
- Haney, W.M. CRC Handbook of Chemistry and Physics, 95th ed.; CRC Press: Boca Rato, FL, USA, 2014; pp. 6–238. [Google Scholar]
- The many faces of liquid gallium. Physics Today 2021, 74, 30.
- Chieh, J.J.; Huang, K.W.; Shi, J.C. Sub-tesla-field magnetization of vibrated magnetic nanoreagents for screening tumor markers. Appl. Phys. Lett. 2015, 106, 073703. [Google Scholar] [CrossRef]
Properties-Sample Sizes (Test Conditions) | Utilized Composite Particles | Iron–Oxide Particles | Liquid Metal Ga | |||
---|---|---|---|---|---|---|
Geometry | individual particles (by SEM) | smooth-profile spots or clusters in 20–40 μm | Rough-profile spots in 10–40 μm | the drop of smooth and streamlined profile in 80–100 μm | ||
calculated particles (by XRD) | range between 25.6–79.9 nm | range between 25.8–46.2 nm | unavailability | |||
Magnetics | individual particles (by MFM & Morphology) | larger clusters in scales of 1–2 μm | bar-shape spots in scales of 0.5–1 μm | × | ||
Sample amount (by VSM) | 57.6 ± 0.7 emu/g (saturation magnetization) | 66.6 ± 0.8 emu/g (saturation magnetization) | × | |||
AC-magnetic-field-induced heat generation | In vitro tests (high and low fields) | ↑ 13.5 ± 2.0 °C/s and ↑ 0.8 ± 0.1 °C/s | ↑ 10.4 ± 1.6 °C/s and ↑ 0.6 ± 0.1 °C/s | ↑ 21.4 ± 3.2 °C/s and ↑ 2.6 ± 0.4 °C/s | ||
In vivo tumor Tests | Exp. Group | Magnetic ablation @ post–injection | 55.5 ± 7.2 °C @10 min., ↑ 3.2 °C/min. [intra-] | × | 75.7 ± 9.4 °C @10 min., ↑ 5.3 °C/min. [intra-] | |
57.3 ± 49.3 cm3 @ Day 12[post–] <87.7 ± 15.8 cm3 @ Day 1[pre–] | 163.4 ± 42.5 cm3@ Day 12[post–] ~132.9 ± 12.0 cm3 @ Day 1[pre–] | |||||
Particle penetration into tissue & Uniform damages to tissue | Drops surrounding boundaries & Damages to only boundaries | |||||
Only injection | 236.9 ± 37.9 cm3@ Day 12[post–] >123.6 ± 18.5 cm3 @ Day 1[pre–] | × | 454.5 ± 72.7 cm3@ Day 12[post–] >>98.7 ± 10.9 cm3 @ Day 1[pre–] | |||
CTL & Exp. Group | No injection | 632.1 ± 82.2 cm3 @ Day 12 >> 110.7 ± 13.3 cm3 @ Day 1 (whether the post–AC magnetic field or not) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-W.; Liu, J.-F.; Wei, W.-C.; Chiang, M.-H.; Chen, T.-Y.; Liao, S.-H.; Chiang, Y.-C.; Kuo, W.-C.; Chen, K.-L.; Peng, K.-T.; et al. Synthesised Conductive/Magnetic Composite Particles for Magnetic Ablations of Tumours. Micromachines 2022, 13, 1605. https://doi.org/10.3390/mi13101605
Lee C-W, Liu J-F, Wei W-C, Chiang M-H, Chen T-Y, Liao S-H, Chiang Y-C, Kuo W-C, Chen K-L, Peng K-T, et al. Synthesised Conductive/Magnetic Composite Particles for Magnetic Ablations of Tumours. Micromachines. 2022; 13(10):1605. https://doi.org/10.3390/mi13101605
Chicago/Turabian StyleLee, Chiang-Wen, Ju-Fang Liu, Wen-Chun Wei, Ming-Hsien Chiang, Ting-Yuan Chen, Shu-Hsien Liao, Yao-Chang Chiang, Wen-Cheng Kuo, Kuen-Lin Chen, Kuo-Ti Peng, and et al. 2022. "Synthesised Conductive/Magnetic Composite Particles for Magnetic Ablations of Tumours" Micromachines 13, no. 10: 1605. https://doi.org/10.3390/mi13101605
APA StyleLee, C. -W., Liu, J. -F., Wei, W. -C., Chiang, M. -H., Chen, T. -Y., Liao, S. -H., Chiang, Y. -C., Kuo, W. -C., Chen, K. -L., Peng, K. -T., Liu, Y. -B., & Chieh, J. -J. (2022). Synthesised Conductive/Magnetic Composite Particles for Magnetic Ablations of Tumours. Micromachines, 13(10), 1605. https://doi.org/10.3390/mi13101605