Demonstration of 144-Gbps Photonics-Assisted THz Wireless Transmission at 500 GHz Enabled by Joint DBN Equalizer
Abstract
:1. Introduction
2. Operation Principle for J-DBN-Based Equalization
2.1. Traditional DBN Method
2.2. J-DBN Nonlinear Equalizers
2.3. Cost Function of DBN-1 and DBN-2 Equalizers
2.3.1. Cost Function of the Adaptive DBN-1-Based Equalizer
2.3.2. Cost Function of Blind DBN-2-Based Equalizer
3. Experimental Setup
3.1. Optical and THz Transmitter Modules
3.2. THz 2 × 2 MIMO Wireless Link and THz Receiver Modules
3.3. Off-Line DSP Blocks
4. Experimental Results and Discussion
4.1. Transmission Results
4.2. Complexity Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- You, X.; Huang, Y.; Liu, S.; Wang, D.; Ma, J.; Xu, W.; Zhang, C.; Zhan, H.; Zhang, C.; Zhang, J.; et al. Toward 6G TK u Extreme Connectivity: Architecture, Key Technologies and Experiments. Available online: https://arxiv.org/abs/2208.01190 (accessed on 2 August 2022).
- Zhu, M.; Zhang, J.; Hua, B.C. Ultra-wideband fiber THz-fiber seamless integration communication system toward 6G: Architecture, key techniques, and testbed implementation. Sci. China Inf. Sci. 2022. [Google Scholar] [CrossRef]
- Jia, S.; Zhang, L.; Wang, S.; Li, W.; Qiao, M.; Lu, Z.; Idrees, N.M.; Pang, X.; Hu, H.; Zhang, X.; et al. 2× 300 Gbit/s line rate PS-64QAM-OFDM THz photonic-wireless transmission. J. Lightwave Technol. 2020, 38, 4715–4721. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Wang, S.; Lu, Z.; Yang, Z.; Liu, S.; Qiao, M.; He, Y.; Pang, X.; Zhang, X.; et al. Tbit/s multi-dimensional multiplexing THz-over-fiber for 6G wireless communication. J. Lightwave Technol. 2021, 39, 5783–5790. [Google Scholar] [CrossRef]
- Harter, T.; Füllner, C.; Kemal, J.N.; Ummethala, S.; Steinmann, J.L.; Brosi, M.; Hesler, J.L.; Bründermann, E.; Müller, A.S.; Freude, W.; et al. Generalized Kramers–Kronig receiver for coherent terahertz communications. Nat. Photonics 2020, 14, 601–606. [Google Scholar] [CrossRef]
- Kawanishi, T. THz and photonic seamless communications. J. Lightwave Technol. 2019, 37, 1671–1679. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Chang, G.K. Photonics-aided millimeter-wave technologies for extreme mobile broadband communications in 5G. J. Lightwave Technol. 2020, 38, 366–378. [Google Scholar] [CrossRef]
- Sengupta, K.; Nagatsuma, T.; Mittleman, D.M. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat. Electron. 2018, 1, 622–635. [Google Scholar] [CrossRef]
- Castro, C.; Elschner, R.; Merkle, T.; Schubert, C.; Freund, R. 100 Gb/s real-time transmission over a THz wireless fiber extender using a digital-coherent optical modem. In Proceedings of the 2020 Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 8–12 March 2020. [Google Scholar]
- Horst, Y.; Blatter, T.; Kulmer, L.; Bitachon, B.I.; Baeuerle, B.; Destraz, M.; Heni, W.; Koepfli, S.; Habegger, P.; Eppenberger, M.; et al. Transparent optical-THz-optical Link transmission over 5/115 m at 240/190 Gbit/s enabled by plasmonics. In Proceedings of the 2021 Optical Fiber Communications Conference (OFC), Francisco, CA, USA, 6–10 June 2021. [Google Scholar]
- Horst, Y.; Blatter, T.; Kulmer, L.; Bitachon, B.I.; Baeuerle, B.; Destraz, M.; Heni, W.; Koepfli, S.; Habegger, P.; Eppenberger, M.; et al. Transparent Optical-THz-Optical Link at 240/192 Gbit/s Over 5/115 m Enabled by Plasmonics. J. Lightwave Technol. 2022, 40, 1690–1697. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, M.; Lei, M.; Hua, B.; Cai, Y.; Zou, Y.; Tian, L.; Li, A.; Huang, Y.; Yu, J.; et al. Demonstration of Real-time 125.516 Gbit/s Transparent Fiber-THz-Fiber Link Transmission at 360~430 GHz based on Photonic Down-Conversion. In Proceedings of the 2022 Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 6–10 March 2022. [Google Scholar]
- Zhang, J.; Zhu, M.; Lei, M.; Hua, B.; Cai, Y.; Zou, Y.; Tian, L.; Li, A.; Wang, Y.; Huang, Y.; et al. Real-time demonstration of 103.125-Gbps fiber–THz–fiber 2× 2 MIMO transparent transmission at 360–430 GHz based on photonics. Opt. Lett. 2022, 47, 1214–1217. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhu, M.; Hua, B.; Lei, M.; Cai, Y.; Zou, Y.; Tong, W.; Ding, J.; Tian, L.; Ma, L.; et al. Real-time Demonstration of 100 GbE THzwireless and Fiber Seamless Networks. J. Lightwave Technol. 2022; Early Access. [Google Scholar]
- Zhang, J.; Zhu, M.; Hua, B.; Lei, M.; Cai, Y.; Zou, Y.; Tian, L.; Li, A.; Huang, Y.; Yu, J.; et al. 6G Oriented 100 GbE Real-time Demonstration of Fiber-THz-Fiber Seamless Communication Enabled by Photonics. In Proceedings of the 2022 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 6–10 March 2022. [Google Scholar]
- Zhang, L.; Hong, X.; Pang, X.; Ozolins, O.; Udalcovs, A.; Schatz, R.; Guo, C.; Zhang, J.; Nordwall, F.; Engenhardt, K.M.; et al. Nonlinearity-aware 200 Gbit/s DMT transmission for C-band short-reach optical interconnects with a single packaged electro-absorption modulated laser. Opt. Lett. 2018, 43, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Stojanovic, N.; Prodaniuc, C.; Zhang, L.; Wei, J. 210/225 Gbit/s PAM-6 transmission with BER below KP4-FEC/EFEC and at least 14 dB link budget. In Proceedings of the European Conference on Optical Communication (ECOC), Rome, Italy, 23–27 September 2018. [Google Scholar]
- Zhang, L.; Pang, X.; Udalcovs, A.; Ozolins, O.; Lin, R.; Yin, X.; Tang, M.; Tong, W.; Xiao, S.; Chen, J. Kernel mapping for mitigating nonlinear impairments in optical short-reach communications. Opt. Express 2019, 27, 29567–29580. [Google Scholar] [CrossRef] [PubMed]
- Lavrencik, J.; Pavan, S.K.; Thomas, V.A.; Ralph, S.E. Noise in VCSEL-based links: Direct measurement of VCSEL transverse mode correlations and implications for MPN and RIN. J. Lightwave Technol. 2016, 35, 698–705. [Google Scholar] [CrossRef]
- Fijalkow, I.; Manlove, C.E.; Johnson, C.R. Adaptive fractionally spaced blind CMA equalization: Excess MSE. IEEE Trans. Signal Process. 1998, 46, 227–231. [Google Scholar] [CrossRef]
- Wang, C.; Wang, K.; Tan, Y.; Wang, F.; Sang, B.; Li, W.; Zhou, W.; Yu, J. High-Speed Terahertz Band Radio-Over-Fiber System Using Hybrid Time-Frequency Domain Equalization. IEEE Photonics Technol. Lett. 2022, 34, 559–562. [Google Scholar] [CrossRef]
- Wang, K.; Wang, C.; Li, W.; Wang, Y.; Ding, J.; Liu, C.; Kong, M.; Wang, F.; Zhou, W.; Zhao, F.; et al. Complex-Valued 2D-CNN Equalization for OFDM Signals in a Photonics-Aided MMW Communication System at the D-Band. J. Lightwave Technol. 2022, 40, 2791–2798. [Google Scholar] [CrossRef]
- Zhou, W.; Zhao, L.; Zhang, J.; Wang, K.; Yu, J.; Chen, Y.W.; Shen, S.; Shiu, R.K.; Chang, G.K. 135-GHz D-band 60-Gbps PAM-8 wireless transmission employing a joint DNN equalizer with BP and CMMA. J. Lightwave Technol. 2020, 38, 3592–3601. [Google Scholar] [CrossRef]
- Zhou, W.; Shi, J.; Zhao, L.; Wang, K.; Wang, C.; Wang, Y.; Kong, M.; Wang, F.; Liu, C.; Ding, J.; et al. Comparison of Real-and Complex-Valued NN Equalizers for Photonics-Aided 90-Gbps D-band PAM-4 Coherent Detection. J. Lightwave Technol. 2021, 39, 6858–6868. [Google Scholar] [CrossRef]
- Liu, C.; Wang, C.; Zhou, W.; Wang, F.; Kong, M.; Yu, J. 81-GHz W-band 60-Gbps 64-QAM wireless transmission based on a dual-GRU equalizer. Opt. Express 2022, 30, 2364–2377. [Google Scholar] [CrossRef] [PubMed]
- Chuang, C.Y.; Wei, C.C.; Lin, T.C.; Chi, K.L.; Liu, L.C.; Shi, J.W.; Chen, Y.K.; Chen, J. Employing deep neural network for high speed 4-PAM optical interconnect. In Proceedings of the 2017 European Conference on Optical Communication (ECOC), Gothenburg, Sweden, 17–21 September 2017. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Tian, F.; Yang, C. Deep belief network-hidden Markov model based nonlinear equalizer for VCSEL based optical interconnect. Sci. China Inf. Sci. 2020, 63, 160406. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhang, J.; Gao, S.; Tong, W.; Wang, Y.; Lei, M.; Hua, B.; Cai, Y.; Zou, Y.; Zhu, M. Demonstration of 144-Gbps Photonics-Assisted THz Wireless Transmission at 500 GHz Enabled by Joint DBN Equalizer. Micromachines 2022, 13, 1617. https://doi.org/10.3390/mi13101617
Liu X, Zhang J, Gao S, Tong W, Wang Y, Lei M, Hua B, Cai Y, Zou Y, Zhu M. Demonstration of 144-Gbps Photonics-Assisted THz Wireless Transmission at 500 GHz Enabled by Joint DBN Equalizer. Micromachines. 2022; 13(10):1617. https://doi.org/10.3390/mi13101617
Chicago/Turabian StyleLiu, Xiang, Jiao Zhang, Shuang Gao, Weidong Tong, Yunwu Wang, Mingzheng Lei, Bingchang Hua, Yuancheng Cai, Yucong Zou, and Min Zhu. 2022. "Demonstration of 144-Gbps Photonics-Assisted THz Wireless Transmission at 500 GHz Enabled by Joint DBN Equalizer" Micromachines 13, no. 10: 1617. https://doi.org/10.3390/mi13101617
APA StyleLiu, X., Zhang, J., Gao, S., Tong, W., Wang, Y., Lei, M., Hua, B., Cai, Y., Zou, Y., & Zhu, M. (2022). Demonstration of 144-Gbps Photonics-Assisted THz Wireless Transmission at 500 GHz Enabled by Joint DBN Equalizer. Micromachines, 13(10), 1617. https://doi.org/10.3390/mi13101617