Nitrogen Self-Doping Carbon Derived from Functionalized Poly(Vinylidene Fluoride) (PVDF) for Supercapacitor and Adsorption Application
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Characterization
2.2. Synthesis of N-Containing Polymeric Precursor via In Situ Cross-Linked Polymerization
2.3. Synthesis of Heteroatom-Doped Porous Carbon
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Manjakkal, L.; Pullanchiyodan, A.; Yogeswaran, N.; Hosseini, E.S.; Dahiya, R. A Wearable Supercapacitor Based on Conductive PEDOT:PSS-Coated Cloth and a Sweat Electrolyte. Adv. Mater. 2020, 32, 1907254. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Wang, S.R.; Hua, Y.N.; Zhou, P.; Liu, G.; Ji, K.; Lin, Z.Y.; Shi, S.W.; Jiang, X.; Zhan, R. Synthesis of biomass-derived N,O-codoped hierarchical porous carbon with large surface area for high-performance supercapacitor. J. Energy Storage 2021, 44, 103286. [Google Scholar] [CrossRef]
- Cao, J.; Jafta, C.J.; Gong, J.; Ran, Q.D.; Lin, X.Z.; Félix, R.; Wilks, R.G.; Bär, M.; Yuan, J.Y.; Ballauff, M.; et al. Synthesis of Dispersible Mesoporous Nitrogen-Doped Hollow Carbon Nanoplates with Uniform Hexagonal Morphologies for Supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 29628–29636. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.Q.; Xu, S.S.; Shao, X.X.; Wen, Y.; Shi, X.R.; Huang, L.P.; Hong, M.; Hu, J.; Yang, Z. Defect-Engineered NiCo-S Comosite as a Bifunctional Electrode for High-Performance Supercapacitor and Electrocatalysis. ACS Appl. Mater. Interfaces 2021, 13, 47717–47727. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Fulik, N.; Hao, G.P.; Zhang, H.Y.; Kaneko, K.; Borchardt, L.; Brunner, E.; Kaskel, S. An Asymmetric Supercapacitor–Diode (CAPode) for Unidirectional Energy Storage. Angew. Chem. Int. Ed. 2019, 58, 13060–13065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Xiao, J.F.; Zhang, T.; Ouyang, L.K.; Yuan, S.J. Single-Step Preparation of Ultrasmall Iron Oxide-Embedded Carbon Nanotubes on Carbon Cloth with Excellent Superhydrophilicity and Enhanced Supercapacitor Performance. ACS Appl. Mater. Interfaces 2021, 13, 45670–45678. [Google Scholar] [CrossRef]
- Kumar, K.S.; Pandey, D.; Thomas, J. High Voltage Asymmetric Supercapacitors Developed by Engineering Electrode Work Functions. ACS Energy Lett. 2021, 6, 3590–3599. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.Z.; Yu, X.W.; Tu, J.F.; Ruan, D.B.; Qiao, Z.J. High-performance discarded separator-based activated carbon for the application of supercapacitors. J. Energy Storage 2021, 44, 103378. [Google Scholar] [CrossRef]
- Zhou, Y.; Cheng, X.Y.; Tynan, B.; Sha, Z.; Huang, F.; Islam, M.S.; Zhang, J.; Rider, A.N.; Dai, L.M.; Chu, D.W.; et al. High-performance hierarchical MnO2/CNT electrode for multifunctional supercapacitors. Carbon 2021, 184, 504–513. [Google Scholar] [CrossRef]
- Zeng, J.N.; Xie, J.H.; Liu, J.; Wang, Z.L.; Cao, X.S.; Lu, X.H. Fe-decorated-NiCo layered double hydroxide nanoflakes via corrosion engineering for highenergy rechargeable Zn-based batteries. J. Mater. Chem. A 2022, 10, 17760–17765. [Google Scholar] [CrossRef]
- Wu, D.D.; Ji, C.C.; Mi, H.Y.; Guo, F.J.; Cui, H.N.; Qiu, P.T.; Yang, N.J. A safe and robust dual-network hydrogel electrolyte coupled with multi-heteroatom doped carbon nanosheets for flexible quasi-solid-state zinc ion hybrid supercapacitors. Nanoscale 2021, 13, 15869–15881. [Google Scholar] [CrossRef] [PubMed]
- Gellrich, C.; Lochmann, S.; Otto, T.; Grothe, J.; Kaskel, S. Energetic carbon precursors for micro-supercapacitor printing. Mater. Adv. 2021, 2, 6380–6387. [Google Scholar] [CrossRef]
- Xiong, Z.Y.; Guo, P.J.; Yuan, S.Y.; Sun, S.F.; Wang, C.; Gao, Y.J. Printable High-Voltage Integrated Microsupercapacitors Based on Heteroatom-Doped Porous Biomass Carbon. Energy Fuels 2021, 35, 16903–16914. [Google Scholar] [CrossRef]
- Liang, Z.Y.; Tu, H.Y.; Shi, D.; Chen, F.Z.; Jiang, H.H.; Shao, Y.L.; Wu, Y.Z.; Hao, X.P. In Situ Growing BCN Nanotubes on Carbon Fibers for Novel High-Temperature Supercapacitor with Excellent Cycling Performance. Small 2021, 17, 2102899. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Liu, H.C.; Wu, Z.F.; Zhang, J.H.; Cui, E.T.; Yue, L.; Hou, G.H. Polyacrylamide Gel-Derived Nitrogen-Doped Carbon Foam Yields High Performance in Supercapacitor Electrodes. ACS Appl. Energy Mater. 2021, 4, 6719–6729. [Google Scholar] [CrossRef]
- Cheng, R.M.; Ou, S.G.; Xiang, B.; Li, Y.J.; Liao, Q.Q. Equilibrium and molecular mechanism of anionic dyes adsorption onto copper(II) complex of dithiocarbamate-modified starch. Langmuir 2010, 26, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.L.; Zhang, M.; Liu, P.; Wang, S.S.; Liu, S.; Feng, H.B.; Zheng, H.B.; Cheng, F.L. Advanced negative electrode of Fe2O3/graphene oxide paper for high energy supercapacitors. Mater. Res. Bull. 2017, 96, 413–418. [Google Scholar] [CrossRef]
- MYu, H.; Lin, D.; Feng, H.B.; Zeng, Y.X.; Tong, Y.X.; Lu, X.H. Boosting the energy density of carbon based aqueous su-percapacitors via optimizing the surface charge. Angew. Chem. Int. Ed. 2017, 56, 5454–5459. [Google Scholar]
- Zeng, S.Q.; Shi, X.; Zheng, D.Z.; Yao, C.Z.; Wang, F.X.; Xu, W.; Lu, X.H. Molten salt assisted synthesis of pitch derived carbon for Zn ion hybrid supercapacitors. Mater. Res. Bull. 2021, 135, 111134. [Google Scholar] [CrossRef]
- Nawwar, M.; Poon, R.; Chen, R.; Sahu, R.P.; Puri, I.K.; Zhitomirsky, I. High areal capacitance of Fe3O4-decorated carbon nanotubes for supercapacitor electrodes. Carbon Energy 2019, 1, 124–133. [Google Scholar] [CrossRef] [Green Version]
- Pramanik, A.; Chattopadhyay, S.; De, G.; Mahanty, S. Efficient energy storage in mustard husk derived porous spherical carbon nanostructures. Mater. Adv. 2021, 2, 7463–7472. [Google Scholar] [CrossRef]
- Bairi, P.; Sardar, K.; Samanta, M.; Chanda, K.; Chattopadhyay, K.K. Nanoporous nitrogen-doped graphitic carbon hollow spheres with enhanced electrochemical properties. Mater. Chem. Front. 2021, 5, 7645–7653. [Google Scholar] [CrossRef]
- Tong, B.L.; Wei, W.T.; Wu, Z.J.; Zhao, L.C.; Ye, W.Y.; Wang, J.; Chen, W.H.; Soutis, C.; Mi, L.W. Interface Engineering Based on Multinanoscale Heterojunctions between NiO Quantum Dots, N-Doped Amorphous Carbon and Ni for Advanced Supercapacitor. ACS Appl. Energy Mater. 2021, 4, 3221–3230. [Google Scholar] [CrossRef]
- Liu, X.D.; Wang, X.L.; Zhang, X.M.; Raisi, B.; Rahmatinejad, J.; Ye, Z.B. Carbon Nanospheres with High Intra- and Inter-Sphere Porosities for High-Rate Energy-Storage Applications. ChemElectrochem 2021, 8, 3674–3677. [Google Scholar] [CrossRef]
- Bardi, N.; Giannakopoulou, T.; Vavouliotis, A.; Trapalis, C. Electrodeposited Films of Graphene, Carbon Nanotubes, and Their Mixtures for Supercapacitor Applications. ACS Appl. Nano Mater. 2020, 3, 10003–10013. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, L.J.; Luo, J.; Peng, Y.Y.; Ji, Q.; Dai, J.Y.; Zhu, J.; Liu, X.Q. Biobased Nitrogen-and Oxygen-Codoped Carbon Materials for High-Performance Supercapacitor. ACS Sustain. Chem. Eng. 2019, 7, 2763–2773. [Google Scholar] [CrossRef]
- Teng, W.L.; Zhou, Q.Q.; Wang, X.K.; Che, H.B.; Du, Y.C.; Hu, P.; Li, H.Y.; Wang, J.S. Biotemplating preparation of N, O-codoped hierarchically porous carbon for high-performance supercapacitors. Appl. Surf. Sci. 2021, 566, 150613. [Google Scholar] [CrossRef]
- Liu, Z.S.; Qin, A.M.; Zhang, K.Y.; Lian, P.; Yin, X.D.; Tan, H. Design and structure of nitrogen and oxygen co-doped car-bon spheres with wrinkled nanocages as active material for supercapacitor application. Nano Energy 2021, 90, 106540. [Google Scholar] [CrossRef]
- Kang, G.D.; Cao, Y.M. Application and modification of poly (vinylidene fluoride) (PVDF) membranes—A review. J. Membr. Sci. 2014, 463, 145. [Google Scholar] [CrossRef]
- Peng, S.; Jin, G.; Li, L.; Li, K.; Srinivasan, M.; Ramakrishna, S.; Chen, J. Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. Chem. Soc. Rev. 2016, 45, 1225. [Google Scholar]
- Zhang, X.; Zhou, J.; Wei, R.; Zhao, W.; Sun, S.; Zhao, C. Design of anion species/strength responsive membranes via in-situ cross-linked copolymerization of ionic liquids. J. Membr. Sci. 2017, 535, 158. [Google Scholar] [CrossRef]
- Zhao, W.; He, C.; Nie, C.; Sun, S.; Zhao, C. Synthesis and characterization of ultrahigh ion-exchange capacity polymeric membranes. Ind. Eng. Chem. Res. 2016, 55, 9667. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, R.; Xiang, T.; Zhao, W.F.; Zhao, C.S. Preparation, characterization and application of poly (sodium p-styrenesulfonate)/poly (methyl methacrylate) particles. J. Ind. Eng. Chem. 2016, 34, 415. [Google Scholar] [CrossRef]
- IIke, A.; Dumee, L.F.; Groth, A.; Orbell, J.D.; Duke, M. Effects of dope sonication and hydrophilic polymer addition on the properties of low pressure PVDF mixed matrix membranes. J. Membr. Sci. 2017, 540, 200. [Google Scholar] [CrossRef] [Green Version]
- El-ShafeySyeda, E.I.; Ali, N.F.; Al-Busafi, S. Preparation and characterization of surface functionalized activated carbons from date palm leaflets and application for methylene blue removal. J. Environ. Chem. Eng. 2016, 4, 2713–2724. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Okoye, P.U.; Hummadi, E.H.; Hameed, B.H. High-performance porous biochar from the pyrolysis of natural and renewable seaweed (Gelidiella acerosa) and its application for the adsorption of methylene blue. Bioresour. Technol. 2019, 278, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.T.; Eu, N.C.; Ibrahim, S.; Kim, H.; Yoon, Y.; Jang, M. Recyclable magnetite-loaded palm shell-waste based acti-vated carbon for the effective removal of methylene blue from aqueous solution. J. Clean. Prod. 2016, 115, 337–342. [Google Scholar] [CrossRef]
- Heidarinejad, Z.; Rahmanian, O.; Fazlzadeh, M.; Heidari, M. Enhancement of methylene blue adsorption onto activated carbon prepared from date press cake by low frequency ultrasound. J. Mol. Liq. 2018, 264, 591–599. [Google Scholar] [CrossRef]
C Atom% | O Atom% | N Atom% | F Atom% | |
---|---|---|---|---|
N-doped Carbon | 89.5% | 5.8% | 2.6% | 3.1% |
Carbon | 92% | 3.9% | 1.5% | 2.6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Liu, Q.; Guan, X.; Liu, Y.; Nie, S.; Wang, Y. Nitrogen Self-Doping Carbon Derived from Functionalized Poly(Vinylidene Fluoride) (PVDF) for Supercapacitor and Adsorption Application. Micromachines 2022, 13, 1747. https://doi.org/10.3390/mi13101747
Zheng Y, Liu Q, Guan X, Liu Y, Nie S, Wang Y. Nitrogen Self-Doping Carbon Derived from Functionalized Poly(Vinylidene Fluoride) (PVDF) for Supercapacitor and Adsorption Application. Micromachines. 2022; 13(10):1747. https://doi.org/10.3390/mi13101747
Chicago/Turabian StyleZheng, Yantao, Qifei Liu, Xingyu Guan, Yuan Liu, Shengqiang Nie, and Yi Wang. 2022. "Nitrogen Self-Doping Carbon Derived from Functionalized Poly(Vinylidene Fluoride) (PVDF) for Supercapacitor and Adsorption Application" Micromachines 13, no. 10: 1747. https://doi.org/10.3390/mi13101747
APA StyleZheng, Y., Liu, Q., Guan, X., Liu, Y., Nie, S., & Wang, Y. (2022). Nitrogen Self-Doping Carbon Derived from Functionalized Poly(Vinylidene Fluoride) (PVDF) for Supercapacitor and Adsorption Application. Micromachines, 13(10), 1747. https://doi.org/10.3390/mi13101747