Effect of Layer Orientation and Pore Morphology on Water Transport in Multilayered Porous Graphene
Abstract
1. Introduction
2. Model and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Roduner, E. Size Matters: Why Nanomaterials Are Different. Chem. Soc. Rev. 2006, 35, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Charitidis, C.A.; Georgiou, P.; Koklioti, M.A.; Trompeta, A.-F.; Markakis, V. Manufacturing Nanomaterials: From Research to Industry. Manuf. Rev. 2014, 1, 11. [Google Scholar] [CrossRef]
- Bergmann, C.; Andrade, M. Nanostructured Materials for Engineering Applications; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Das, S.; Sen, B.; Debnath, N. Recent Trends in Nanomaterials Applications in Environmental Monitoring and Remediation. Environ. Sci. Pollut. Res. 2015, 22, 18333–18344. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Kozbial, A.; Shenoy, G.; Zhou, F.; McGinley, R.; Ireland, P.; Morganstein, B.; Kunkel, A.; Surwade, S.P.; et al. Effect of Airborne Contaminants on the Wettability of Supported Graphene and Graphite. Nat. Mater. 2013, 12, 925–931. [Google Scholar] [CrossRef] [PubMed]
- Hong, G.; Han, Y.; Schutzius, T.M.; Wang, Y.; Pan, Y.; Hu, M.; Jie, J.; Sharma, C.S.; Müller, U.; Poulikakos, D. On the Mechanism of Hydrophilicity of Graphene. Nano Lett. 2016, 16, 4447–4453. [Google Scholar] [CrossRef] [PubMed]
- Belyaeva, L.A.; van Deursen, P.M.G.; Barbetsea, K.I.; Schneider, G.F. Hydrophilicity of Graphene in Water through Transparency to Polar and Dispersive Interactions. Adv. Mater. 2018, 30, 1703274. [Google Scholar] [CrossRef] [PubMed]
- Accordino, S.R.; de Oca, J.M.M.; Fris, J.A.R.; Appignanesi, G.A. Hydrophilic Behavior of Graphene and Graphene-Based Materials. J. Chem. Phys. 2015, 143, 154704. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wan, S.; Pu, J.; Wang, L.; Liu, X. Highly Hydrophobic and Adhesive Performance of Graphene Films. J. Mater. Chem. 2011, 21, 12251–12258. [Google Scholar] [CrossRef]
- An, S.; Joshi, B.N.; Lee, J.-G.; Lee, M.W.; Kim, Y.I.; Kim, M.; Jo, H.S.; Yoon, S.S. A Comprehensive Review on Wettability, Desalination, and Purification Using Graphene-Based Materials at Water Interfaces. Catal. Today 2017, 295, 14–25. [Google Scholar] [CrossRef]
- Král, P. Realistic Cataloguing of Nanopores. Nat. Mater. 2019, 18, 99–101. [Google Scholar] [CrossRef] [PubMed]
- Konatham, D.; Yu, J.; Ho, T.A.; Striolo, A. Simulation Insights for Graphene-Based Water Desalination Membranes. Langmuir 2013, 29, 11884–11897. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; He, Z.; Gupta, K.M.; Shi, Q.; Lu, R. Molecular Dynamics Study on Water Desalination through Functionalized Nanoporous Graphene. Carbon 2017, 116, 120–127. [Google Scholar] [CrossRef]
- Dervin, S.; Dionysiou, D.D.; Pillai, S.C. 2D Nanostructures for Water Purification: Graphene and Beyond. Nanoscale 2016, 8, 15115–15131. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Wu, S.; Wang, D.; Xie, G.; Cheng, M.; Wang, G.; Yang, W.; Chen, P.; Shi, D.; Zhang, G. Fabrication of High-Quality All-Graphene Devices with Low Contact Resistances. Nano Res. 2014, 7, 1449–1456. [Google Scholar] [CrossRef]
- Yan, J.; Fan, Z.; Wei, T.; Qian, W.; Zhang, M.; Wei, F. Fast and Reversible Surface Redox Reaction of Graphene–MnO2 Composites as Supercapacitor Electrodes. Carbon 2010, 48, 3825–3833. [Google Scholar] [CrossRef]
- Ning, G.; Fan, Z.; Wang, G.; Gao, J.; Qian, W.; Wei, F. Gram-Scale Synthesis of Nanomesh Graphene with High Surface Area and Its Application in Supercapacitor Electrodes. Chem. Commun. 2011, 47, 5976–5978. [Google Scholar] [CrossRef]
- Ko, Y.U.; Cho, S.; Choi, K.S.; Park, Y.; Kim, S.T.; Kim, N.H.; Kim, S.Y.; Chang, S.T. Microlitre Scale Solution Processing for Controlled, Rapid Fabrication of Chemically Derived Graphene Thin Films. J. Mater. Chem. 2012, 22, 3606–3613. [Google Scholar] [CrossRef]
- Bae, S.; Jeon, I.-Y.; Yang, J.; Park, N.; Shin, H.; Park, S.; Ruoff, R.; Dai, L.; Baek, J.-B. Large-Area Graphene Films by Simple Solution Casting of Edge-Selectively Functionalized Graphite. ACS Nano 2011, 5, 4974–4980. [Google Scholar] [CrossRef]
- Zhang, C.; Tjiu, W.W.; Fan, W.; Huang, S.; Liu, T. A Novel Approach for Transferring Water-Dispersible Graphene Nanosheets into Organic Media. J. Mater. Chem. 2012, 22, 11748–11754. [Google Scholar] [CrossRef]
- Cohen-Tanugi, D.; Grossman, J.C. Water Desalination across Nanoporous Graphene. Nano Lett. 2012, 12, 3602–3608. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, M.; Li, C.; Shi, G. Graphene-Based Membranes for Molecular Separation. J. Phys. Chem. Lett. 2015, 6, 2806–2815. [Google Scholar] [CrossRef]
- Iwasaki, T.; Park, H.J.; Konuma, M.; Lee, D.S.; Smet, J.H.; Starke, U. Long-Range Ordered Single-Crystal Graphene on High-Quality Heteroepitaxial Ni Thin Films Grown on MgO(111). Nano Lett. 2011, 11, 79–84. [Google Scholar] [CrossRef]
- Pan, J.; Xiao, S.; Zhang, Z.; Wei, N.; He, J.; Zhao, J. Nanoconfined Water Dynamics in Multilayer Graphene Nanopores. J. Phys. Chem. C 2020, 124, 17819–17828. [Google Scholar] [CrossRef]
- Guillen, G.; Hoek, E. Modeling the Impacts of Feed Spacer Geometry on Reverse Osmosis and Nanofiltration Processes. Chem. Eng. J. 2009, 149, 221–231. [Google Scholar] [CrossRef]
- Sint, K.; Wang, B.; Král, P. Selective Ion Passage through Functionalized Graphene Nanopores. J. Am. Chem. Soc. 2008, 130, 16448–16449. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, K.A.; Mansoor, B.; Mansour, A.; Khraisheh, M. Functional Graphene Nanosheets: The next Generation Membranes for Water Desalination. Desalination 2015, 356, 208–225. [Google Scholar] [CrossRef]
- He, Z.; Zhou, J.; Lu, X.; Corry, B. Bioinspired Graphene Nanopores with Voltage-Tunable Ion Selectivity for Na+ and K+. ACS Nano 2013, 7, 10148–10157. [Google Scholar] [CrossRef] [PubMed]
- Lohrasebi, A.; Rikhtehgaran, S. Ion Separation and Water Purification by Applying External Electric Field on Porous Graphene Membrane. Nano Res. 2018, 11, 2229–2236. [Google Scholar] [CrossRef]
- Chogani, A.; Moosavi, A.; Sarvestani, A.B.; Shariat, M. The Effect of Chemical Functional Groups and Salt Concentration on Performance of Single-Layer Graphene Membrane in Water Desalination Process: A Molecular Dynamics Simulation Study. J. Mol. Liq. 2020, 301, 112478. [Google Scholar] [CrossRef]
- Price, D.J.; Brooks, C.L. A Modified TIP3P Water Potential for Simulation with Ewald Summation. J. Chem. Phys. 2004, 121, 10096–10103. [Google Scholar] [CrossRef]
- Samson; OneAngstrom: Grenoble, France, 2020.
- Bitzek, E.; Koskinen, P.; Gähler, F.; Moseler, M.; Gumbsch, P. Structural Relaxation Made Simple. Phys. Rev. Lett. 2006, 97, 170201. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in ’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H.J.C. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. J. Comput. Phys. 1977, 23, 327–341. [Google Scholar] [CrossRef]
- Evans, D.J.; Holian, B.L. The Nose–Hoover Thermostat. J. Chem. Phys. 1985, 83, 4069–4074. [Google Scholar] [CrossRef]
- Stuart, S.J.; Tutein, A.B.; Harrison, J.A. A Reactive Potential for Hydrocarbons with Intermolecular Interactions. J. Chem. Phys. 2000, 112, 6472–6486. [Google Scholar] [CrossRef]
- Chen, S.; Ding, J.; Li, Q.; He, D.; Liu, Y.; Wang, L.; Lyu, Q.; Wang, M. Control One-Dimensional Length of Rectangular Pore on Graphene Membrane for Better Desalination Performance. Nanotechnology 2022, 33, 245705. [Google Scholar] [CrossRef]
- Hadidi, H.; Kamali, R. Non-Equilibrium Molecular Dynamics Simulations of Water Transport through Plate- and Hourglass-Shaped CNTs in the Presence of Pressure Difference and Electric Field. Comput. Mater. Sci. 2020, 185, 109978. [Google Scholar] [CrossRef]
- Gravelle, S.; Joly, L.; Ybert, C.; Bocquet, L. Large Permeabilities of Hourglass Nanopores: From Hydrodynamics to Single File Transport. J. Chem. Phys. 2014, 141, 18C526. [Google Scholar] [CrossRef]
- Robinson, F.; Shahbabaei, M.; Kim, D. Deformation Effect on Water Transport through Nanotubes. Energies 2019, 12, 4424. [Google Scholar] [CrossRef]
- Robinson, F.; Park, C.; Kim, M.; Kim, D. Defect Induced Deformation Effect on Water Transport through (6, 6) Carbon Nanotube. Chem. Phys. Lett. 2021, 778, 138632. [Google Scholar] [CrossRef]
- Hummer, G.; Rasaiah, J.C.; Noworyta, J.P. Water Conduction through the Hydrophobic Channel of a Carbon Nanotube. Nature 2001, 414, 188–190. [Google Scholar] [CrossRef]
- Abbaspour, M.; Akbarzadeh, H.; Abroodi, M. A New and Accurate Expression for the Radial Distribution Function of Confined Lennard-Jones Fluid in Carbon Nanotubes. RSC Adv. 2015, 5, 95781–95787. [Google Scholar] [CrossRef]
- Ramazani, F.; Ebrahimi, F. Uncertainties in the Capillary Filling of Heterogeneous Water Nanochannels. J. Phys. Chem. C 2016, 120, 12871–12878. [Google Scholar] [CrossRef]
Pattern | Layer 1 | Layer 2 | Layer 3 | Layer 4 | Layer 5 |
---|---|---|---|---|---|
base | - | - | - | - | - |
1 | - | - | θ | - | - |
2 | - | θ | - | θ | - |
3 | - | θ | θ | θ | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, C.; Robinson, F.; Kim, D. Effect of Layer Orientation and Pore Morphology on Water Transport in Multilayered Porous Graphene. Micromachines 2022, 13, 1786. https://doi.org/10.3390/mi13101786
Park C, Robinson F, Kim D. Effect of Layer Orientation and Pore Morphology on Water Transport in Multilayered Porous Graphene. Micromachines. 2022; 13(10):1786. https://doi.org/10.3390/mi13101786
Chicago/Turabian StylePark, Chulwoo, Ferlin Robinson, and Daejoong Kim. 2022. "Effect of Layer Orientation and Pore Morphology on Water Transport in Multilayered Porous Graphene" Micromachines 13, no. 10: 1786. https://doi.org/10.3390/mi13101786
APA StylePark, C., Robinson, F., & Kim, D. (2022). Effect of Layer Orientation and Pore Morphology on Water Transport in Multilayered Porous Graphene. Micromachines, 13(10), 1786. https://doi.org/10.3390/mi13101786