Anisotropic Magnetoresistance Evaluation of Electrodeposited Ni80Fe20 Thin Film on Silicon
Abstract
1. Introduction
2. Experimental
2.1. Materials and Instrumentation
2.2. Sample Preparation
2.2.1. Solution
2.2.2. Electrochemical Deposition
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Demand, M.; Encinas-Oropesa, A.; Kenane, S.; Ebels, U.; Huynen, I.; Piraux, L. Ferromagnetic resonance studies of nickel and permalloy nanowire arrays. J. Magn. Magn. Mater. 2002, 249, 228–233. [Google Scholar] [CrossRef]
- Volmer, M.; Neamtu, J. Magnetic field sensors based on permalloy multilayers and nanogranular films. J. Magn. Magn. Mater. 2007, 316, e265–e268. [Google Scholar] [CrossRef]
- Jiang, J.S.; Xiao, J.Q.; Chien, C.L. Magnetic properties and giant magnetoresistance of granular permalloy in silver. Appl. Phys. Lett. 1992, 61, 2362–2364. [Google Scholar] [CrossRef]
- Manzin, A.; Nabaei, V.; Corte-León, H.; Kazakova, O.; Krzysteczko, P.; Schumacher, H.W. Modeling of anisotropic magnetoresistance properties of permalloy nanostructures. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Zhang, B.; Fenineche, N.E.; Zhu, L.; Liao, H.; Coddet, C. Studies of magnetic properties of permalloy (Fe–30% Ni) prepared by SLM technology. J. Magn. Magn. Mater. 2012, 324, 495–500. [Google Scholar] [CrossRef]
- Shi, Y.; Qian, P. Simulation Research of Magnetic Modulation Sensor Based on Permalloy. In Proceedings of the 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 11–14 August 2019; pp. 1–5. [Google Scholar]
- Greening, R.W.; Smith, D.A.; Lim, Y.; Jiang, Z.; Barber, J.; Dail, S.; Heremans, J.J.; Emori, S. Current-induced spin–orbit field in permalloy interfaced with ultrathin Ti and Cu. Appl. Phys. Lett. 2020, 116, 052402. [Google Scholar] [CrossRef]
- Gong, M.; Dai, H. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39. [Google Scholar] [CrossRef]
- Kwiatkowski, W.; Tumanski, S. The permalloy magnetoresistive sensors-properties and applications. J. Phys. E Sci. Instrum. 1986, 19, 502. [Google Scholar] [CrossRef]
- Wang, S.; Gao, T.; Wang, C.; He, J. Studies of anisotropic magnetoresistance and magnetic property of Ni81Fe19 ultra-thin films with the lower base vacuum. J. Alloy. Compd. 2013, 554, 405–407. [Google Scholar] [CrossRef]
- Bang, W.; Montoncello, F.; Kaffash, M.T.; Hoffmann, A.; Ketterson, J.B.; Jungfleisch, M.B. Ferromagnetic resonance spectra of permalloy nano-ellipses as building blocks for complex magnonic lattices. J. Appl. Phys. 2019, 126, 203902. [Google Scholar] [CrossRef]
- Twisselmann, D.J.; McMichael, R.D. Intrinsic damping and intentional ferromagnetic resonance broadening in thin Permalloy films. J. Appl. Phys. 2003, 93, 6903–6905. [Google Scholar] [CrossRef]
- Schreiber, N.; Nair, H.; Ruf, J.; Miao, L.; Goodge, B.; Shen, K.; Schlom, D. Growth and Characterization of Heterostructures of Ferromagnetic SrRuO 3 and Superconducting Sr 2 RuO 4 by Molecular-Beam Epitaxy. Bull. Am. Phys. Soc. 2020, 65. [Google Scholar]
- Nakatani, R.; Dei, T.; Kobayashi, T.; Sugita, Y. Giant magnetoresistance in Ni-Fe/Cu multilayers formed by ion beam sputtering. IEEE Trans. Magn. 1992, 28, 2668–2670. [Google Scholar] [CrossRef]
- Neamtu, J.; Volmer, M. Magnetoresistance and magnetic properties of magnetic thin film multilayers. Surf. Sci. 2001, 482, 1010–1014. [Google Scholar] [CrossRef]
- Meyer, D.C.; Paufler, P. Coherency and lattice spacings of textured permalloy/copper multilayers as revealed by X-ray diffraction. J. Alloy. Compd. 2000, 298, 42–46. [Google Scholar] [CrossRef]
- Alper, M.; Schwarzacher, W.; Lane, S.J. The effect of pH changes on the giant magnetoresistance of electrodeposited superlattices. J. Electrochem. Soc. 1997, 144, 2346. [Google Scholar] [CrossRef]
- Dulal, S.M.S.I.; Charles, E.A.; Roy, S. Characterisation of Co–Ni (Cu)/Cu multilayers deposited from a citrate electrolyte in a flow channel cell. Electrochim. Acta 2004, 49, 2041–2049. [Google Scholar] [CrossRef]
- Ueda, Y.U.Y.; Ito, M.I.M. Magnetoresistance in Co–Cu alloy films formed by electrodeposition method. Jpn. J. Appl. Phys. 1994, 33, L1403. [Google Scholar] [CrossRef]
- Yu, Z.; Jia, X.; Du, J.; Zhang, J. Electrochromic WO3 films prepared by a new electrodeposition method. Sol. Energy Mater. Sol. Cells 2000, 64, 55–63. [Google Scholar] [CrossRef]
- Nishino, J.; Chatani, S.; Uotani, Y.; Nosaka, Y. Electrodeposition method for controlled formation of CdS films from aqueous solutions. J. Electroanal. Chem. 1999, 473, 217–222. [Google Scholar] [CrossRef]
- Esmaili, S.; Bahrololoom, M.E. A new single bath for the electrodeposition of NiFe/Cu multilayers exhibiting giant magnetoresistance behavior. Surface Eng. Appl. Electrochem. 2012, 48, 35–41. [Google Scholar] [CrossRef]
- Kockar, H.; Alper, M.; Kuru, H.; Meydan, T. Magnetic anisotropy and its thickness dependence for NiFe alloy films electrodeposited on polycrystalline Cu substrates. J. Magn. Magn. Mater. 2006, 304, e736–e738. [Google Scholar] [CrossRef]
- Kok, K.Y.; Hangarter, C.M.; Goldsmith, B.; Ng, I.K.; Saidin, N.B.; Myung, N.V. Synthesis and characterization of electrodeposited permalloy (Ni80Fe20)/Cu multilayered nanowires. J. Magn. Magn. Mater. 2010, 322, 3876–3881. [Google Scholar] [CrossRef]
- Kok, K.Y.; Hangarter, C.; Goldsmith, B.; Ng, I.K.; Saidin, N.U.; Myung, N.V. Template Assisted Growth and Characterization of Electrodeposited Permalloy (Ni80Fe20)/Cu Multilayered Nanowires. ECS Trans. 2010, 25, 97. [Google Scholar] [CrossRef]
- Balachandran, R.; Yow, H.K.; Ong, B.H.; Tan, K.B.; Anuar, K.; Wong, H.Y. Surface morphology and electrical properties of pulse electrodeposition of NiFe films on copper substrates in ultrasonic field. Int. J. Electrochem. Sci 2011, 6, e3579. [Google Scholar]
- Kuru, H.; Kockar, H.; Alper, M. Giant magnetoresistance (GMR) behavior of electrodeposited NiFe/Cu multilayers: Dependence of non-magnetic and magnetic layer thicknesses. J. Magn. Magn. Mater. 2017, 444, 132–139. [Google Scholar] [CrossRef]
- Munford, M.L.; Seligman, L.; Sartorelli, M.L.; Voltolini, E.; Martins LF, O.; Schwarzacher, W.; Pasa, A.A. Electrodeposition of magnetic thin films of cobalt on silicon. J. Magn. Magn. Mater. 2001, 226, 1613–1615. [Google Scholar] [CrossRef]
- Gómez, E.; Vallés, E. Electrodeposition of Co+ Ni alloys on modified silicon substrates. J. Appl. Electrochem. 1999, 29, 803–810. [Google Scholar] [CrossRef]
- Pasa, A.A.; Schwarzacher, W. Electrodeposition of thin films and multilayers on silicon. Phys. Status Solidi A 1999, 173, 73–84. [Google Scholar] [CrossRef]
- Rashkova, B.; Guel, B.; Pötzschke, R.T.; Staikov, G.; Lorenz, W.J. Electrodeposition of Pb on n-Si (111). Electrochim. Acta 1998, 43, 3021–3028. [Google Scholar] [CrossRef]
- Gao, L.J.; Ma, P.; Novogradecz, K.M.; Norton, P.R. Characterization of Permalloy thin films electrodeposited on Si (111) surfaces. J. Appl. Phys. 1997, 81, 7595–7599. [Google Scholar] [CrossRef]
- Spada, E.R.; De Oliveira, L.S.; Da Rocha, A.S.; Pasa, A.A.; Zangari, G.; Sartorelli, M.L. Thin films of FexNi1− x electroplated on silicon (1 0 0). J. Magn. Magn. Mater. 2004, 272, E891–E892. [Google Scholar] [CrossRef]
- Sam, S.; Fortas, G.; Guittoum, A.; Gabouze, N.; Djebbar, S. Electrodeposition of NiFe films on Si (1 0 0) substrate. Surf. Sci. 2007, 601, 4270–4273. [Google Scholar] [CrossRef]
- Barker, D.; Walsh, F.C. Applications of Faraday’s laws of electrolysis in metal finishing. Trans. IMF 1991, 69, 158–162. [Google Scholar] [CrossRef]
- Rugar, D.; Hansma, P. Atomic force microscopy. Phys. Today 1990, 43, 23–30. [Google Scholar] [CrossRef]
- Albrecht, T.R.; Quate, C.F. Atomic resolution imaging of a nonconductor by atomic force microscopy. J. Appl. Phys. 1987, 62, 2599–2602. [Google Scholar] [CrossRef]
- Meyer, E. Atomic force microscopy. Prog. Surf. Sci. 1992, 41, 3–49. [Google Scholar] [CrossRef]
- Giessibl, F.J. Advances in atomic force microscopy. Rev. Mod. Phys. 2003, 75, 949. [Google Scholar] [CrossRef]
- Tarditi, A.M.; Bosko, M.L.; Cornaglia, L.M. 3.1 Electroless Plating of Pd Binary and Ternary Alloys and Surface Characteristics for Application in Hydrogen Separation. In Comprehensive Materials Finishing; Elsevier: Oxford, UK, 2017; pp. 1–24. [Google Scholar]
- Guo, L.; Oskam, G.; Radisic, A.; Hoffmann, P.M.; Searson, P.C. Island growth in electrodeposition. J. Phys. D: Appl. Phys. 2011, 44, 443001. [Google Scholar] [CrossRef]
- Möller, F.A.; Magnussen, O.M.; Behm, R.J. Two-dimensional needle growth of electrodeposited Ni on reconstructed Au (111). Phys. Rev. Lett. 1996, 77, 3165. [Google Scholar] [CrossRef]
- Miao, G.; Xiao, G.; Gupta, A. Variations in the magnetic anisotropy properties of epitaxial Cr O 2 films as a function of thickness. Phys. Rev. B 2005, 71, 094418. [Google Scholar] [CrossRef]
- Poulopoulos, P.; Lindner, J.; Farle, M.; Baberschke, K. Changes of magnetic anisotropy due to roughness: A quantitative scanning tunneling microscopy study on Ni/Cu (001). Surf. Sci. 1999, 437, 277–284. [Google Scholar] [CrossRef]
- Islam, J.; Yamamoto, Y.; Hori, H. Thickness-dependent coercivity and magnetization process of Co/GaAs (1 0 0). J. Magn. Magn. Mater. 2007, 310, 2234–2236. [Google Scholar] [CrossRef]
- Camarero, J.; De Miguel, J.J.; Miranda, R.; Hernando, A. Thickness-dependent coercivity of ultrathin Co films grown on Cu (111). J. Phys. Condens. Matter 2000, 12, 7713. [Google Scholar] [CrossRef]
- Arregi, J.A.; Riego, P.; Berger, A. What is the longitudinal magneto-optical Kerr effect? J. Phys. D: Appl. Phys. 2016, 50, 03LT01. [Google Scholar] [CrossRef]
- Miyahara, T.; Takahashi, M. The dependence of the longitudinal Kerr magneto-optic effect on saturation magnetization in Ni-Fe films. Jpn. J. Appl. Phys. 1976, 15, 291. [Google Scholar] [CrossRef]
- Tóth, B.G.; Péter, L.; Révész, Á.; Pádár, J.; Bakonyi, I. Temperature dependence of the electrical resistivity and the anisotropic magnetoresistance (AMR) of electrodeposited Ni-Co alloys. Eur. Phys. J. B 2010, 75, 167–177. [Google Scholar] [CrossRef]
- Smith, D.O. Anisotropy in permalloy films. J. Appl. Phys. 1959, 30, S264–S265. [Google Scholar] [CrossRef]
- Bakonyi, I.; Tóth, J.; Kiss, L.F.; Tóth-Kádár, E.; Péter, L.; Dinia, A. Origin of giant magnetoresistance contributions in electrodeposited Ni–Cu/Cu multilayers. J. Magn. Magn. Mater. 2004, 269, 156–167. [Google Scholar] [CrossRef]
- Bakonyi, I.; Tóth, J.; Goualou, L.; Becsei, T.; Tóth-Kádár, E.; Schwarzacher, W.; Nabiyouni, G. Giant magnetoresistance of electrodeposited Ni81Cu19/Cu multilayers. J. Electrochem. Soc. 2002, 149, C195. [Google Scholar] [CrossRef]
- Guanghua, Y.U.; Hongchen, Z.H.A.O.; Fengwu, Z.H.U. Ultrathin permalloy films. Chin. Sci. Bull. 2001, 46, 1681–1684. [Google Scholar] [CrossRef]
- Kateb, M.; Ingvarsson, S. Thickness-dependent magnetic and magnetoresistance properties of permalloy prepared by field assisted tilt sputtering. In Proceedings of the 2017 IEEE Sensors Applications Symposium (SAS), Glassboro, NJ, USA, 13–15 March 2017; pp. 1–5. [Google Scholar]
- Schmool, D.S.; Rocha, R.; Sousa, J.B.; Santos, J.A.M.; Kakazei, G.N.; Garitaonandia, J.S.; Rodriguez, D.M.; Lezama, L.; Barandiarán, J.M. Ferromagnetic resonance in nanometric magnetic systems. J. Optoelectron. Adv. Mater. 2004, 6, 541–550. [Google Scholar]
- Landau, L.; Lifshitz, E. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. In Perspectives in Theoretical Physics; Pergamon: Oxford, UK, 1992; pp. 51–65. [Google Scholar]
- Nahrwold, G.; Scholtyssek, J.M.; Motl-Ziegler, S.; Albrecht, O.; Merkt, U.; Meier, G. Structural, magnetic, and transport properties of Permalloy for spintronic experiments. J. Appl. Phys. 2010, 108, 013907. [Google Scholar] [CrossRef]
- Urban, R.; Heinrich, B.; Woltersdorf, G.; Ajdari, K.; Myrtle, K.; Cochran, J.F.; Rozenberg, E. Nanosecond magnetic relaxation processes in ultrathin metallic films prepared by MBE. Phys. Rev. B 2001, 65, 020402. [Google Scholar] [CrossRef]
- Celinski, Z.; Urquhart, K.B.; Heinrich, B. Using ferromagnetic resonance to measure the magnetic moments of ultrathin films. J. Magn. Magn. Mater. 1997, 166, 6–26. [Google Scholar] [CrossRef]
- Rantschler, J.O.; Maranville, B.B.; Mallett, J.J.; Chen, P.; McMichael, R.D.; Egelhoff, W.F. Damping at normal metal/permalloy interfaces. IEEE Trans. Magn. 2005, 41, 3523–3525. [Google Scholar] [CrossRef]
- Oestreich, M.; Hübner, J.; Hägele, D.; Klar, P.J.; Heimbrodt, W.; Rühle, W.W.; Ashenford, D.E.; Lunn, B. Spin injection into semiconductors. Appl. Phys. Lett. 1999, 74, 1251–1253. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khosravi, P.; Seyyed Ebrahimi, S.A.; Lalegani, Z.; Hamawandi, B. Anisotropic Magnetoresistance Evaluation of Electrodeposited Ni80Fe20 Thin Film on Silicon. Micromachines 2022, 13, 1804. https://doi.org/10.3390/mi13111804
Khosravi P, Seyyed Ebrahimi SA, Lalegani Z, Hamawandi B. Anisotropic Magnetoresistance Evaluation of Electrodeposited Ni80Fe20 Thin Film on Silicon. Micromachines. 2022; 13(11):1804. https://doi.org/10.3390/mi13111804
Chicago/Turabian StyleKhosravi, Payam, Seyyed Ali Seyyed Ebrahimi, Zahra Lalegani, and Bejan Hamawandi. 2022. "Anisotropic Magnetoresistance Evaluation of Electrodeposited Ni80Fe20 Thin Film on Silicon" Micromachines 13, no. 11: 1804. https://doi.org/10.3390/mi13111804
APA StyleKhosravi, P., Seyyed Ebrahimi, S. A., Lalegani, Z., & Hamawandi, B. (2022). Anisotropic Magnetoresistance Evaluation of Electrodeposited Ni80Fe20 Thin Film on Silicon. Micromachines, 13(11), 1804. https://doi.org/10.3390/mi13111804