Impact of Various Thermistors on the Properties of Resistive Microbolometers Fabricated by CMOS Process
Abstract
:1. Introduction
2. Structural Design and Fabrication
2.1. Structural Design
2.2. Structural Fabrication
3. Experimental Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hanson, C.M.; Beratan, H.R.; Owen, R.A.; Corbin, M.; McKenney, S. Uncooled thermal imaging at Texas instruments. Proc. SPIE 1992, 1735, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Niklaus, F.; Vieider, C.; Jakobsen, H. MEMS-based uncooled infrared bolometer arrays: A review. Proc. SPIE 2008, 6836, 68360D. [Google Scholar] [CrossRef]
- Rogalski, A.; Martyniuk, P.; Kopytko, M. Challenges of small-pixel infrared detectors: A review. Rep. Prog. Phys. 2016, 79, 046501. [Google Scholar] [CrossRef]
- Kimata, M. Uncooled infrared focal plane arrays. IEEJ Trans. Elect. Electron. Eng. 2018, 13, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Guo, Y.; Zhu, H.; Luo, M.; Han, P.; Ji, X. Low-Cost Microbolometer Type Infrared Detectors. Micromachines 2020, 11, 800. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, C.; Blanchard, N.; Martel, A.; Terroux, M.; Vachon, C.; Mercier, L.; Gagnon, L.; Tremblay, B.; Marchese, L.; Bergeron, A. A compact 2048 × 1536 pixel infrared imager for long distance surveillance. Proc. SPIE 2012, 8541, 85410L. [Google Scholar] [CrossRef]
- Kennedy, A.; Masini, P.; Lamb, M.; Hamers, J.; Kocian, T.; Gordon, E.; Parrish, W.; Williams, R.; LeBeau, T. Advanced uncooled sensor product development. Proc. SPIE 2015, 9451, 94511C. [Google Scholar] [CrossRef]
- Voshella, A.; Dharb, N.; Rana, M.M. Materials for microbolometers: Vanadium oxide or silicon derivatives. Proc. SPIE 2017, 10209, 102090M. [Google Scholar] [CrossRef]
- Fang, C.; Chen, X.Q.; Yi, X.J. High-speed CMOS readout integrated circuit for large-scale and high-resolution microbolometer array. Optik 2014, 125, 3315–3318. [Google Scholar] [CrossRef]
- Li, C.; Han, C.-J.; Skidmore, G. Overview of DRS uncooled VOx infrared detector development. Opt. Eng. 2011, 50, 061017. [Google Scholar] [CrossRef]
- Dong, L.; Yue, R.; Liu, L. Fabrication and characterization of integrated uncooled infrared sensor arrays using a-Si thin-film transistors as active elements. J. Microelectromech. Syst. 2005, 14, 1167–1177. [Google Scholar] [CrossRef]
- Tissot, J.L.; Tinnes, S.; Durand, A.; Minassian, C.; Robert, P.; Vilain, M.; Yon, J.J. High-performance uncooled amorphous silicon video graphics array and extended graphics array infrared focal plane arrays with 17-μm pixel pitch. Opt. Eng. 2011, 50, 061006. [Google Scholar] [CrossRef]
- Shin, C.H.; Pham, D.P.; Park, J.; Lee, Y.J.; Kim, S.; Yi, J. Investigation of boron-doped hydrogenated silicon films as a thermo-sensing layer for uncooled microbolometer. Thin Solid Film. 2019, 690, 137515. [Google Scholar] [CrossRef]
- Schimert, T.; Hanson, C.; Brady, J.; Fagan, T.; Taylor, M.; Mccardel, W.; Gooch, R.; Gohlke, M.; Syllaios, A.J. Advances in small-pixel, large-format α-Si bolometer arrays. Proc. SPIE 2009, 7298, 72980T. [Google Scholar] [CrossRef]
- Cheng, Q.; Paradis, S.; Bui, T.; Almasri, M. Design of dual-band uncooled infrared microbolometer. IEEE Sensors J. 2011, 11, 167–175. [Google Scholar] [CrossRef]
- Oloomi, H.M.; Alam, M.S.; Rana, M.M. Noise performance evaluation of uncooled infrared detectors. IEEE Sensors J. 2011, 11, 971–987. [Google Scholar] [CrossRef]
- Shen, N.; Yu, J.; Tang, Z.A. An uncooled infrared microbolometer array for low-cost application. IEEE Photonics Technol. Lett. 2015, 27, 1247–1249. [Google Scholar] [CrossRef]
- Eminoglu, S.; Tezcan, D.S.; Tanrikulu, M.Y.; Akin, T. Low-cost uncooled infrared detectors in CMOS process. Sens. Actuator A-Phys. 2003, 109, 102–113. [Google Scholar] [CrossRef]
- Eminoglu, S.; Tanrikulu, M.Y.; Akin, T. A Low-Cost 128 × 128 Uncooled Infrared Detector Array in CMOS Process. J. Microelectromech. Syst. 2008, 18, 20–30. [Google Scholar] [CrossRef]
- Tezcan, D.S.; Eminoglu, S.; Akin, T. A low-cost uncooled infrared microbolometer detector in standard CMOS technology. IEEE Trans. Electron Devices 2003, 50, 494–502. [Google Scholar] [CrossRef]
- Shen, T.W.; Chang, K.C.; Sun, C.M.; Fang, W.L. Performance enhance of CMOS-MEMS thermoelectric infrared sensor by using sensing material and structure design. J. Micromech. Microeng. 2019, 29, 025007. [Google Scholar] [CrossRef]
- Lin, P.S.; Shen, T.W.; Chan, K.C.; Fang, W. CMOS MEMS thermoelectric infrared sensor with plasmonic metamaterial absorber for selective wavelength absorption and responsivity enhancement. IEEE Sens. J. 2020, 20, 11105–11114. [Google Scholar] [CrossRef]
- Wang, B.; Lai, J.J.; Li, H.; Hu, H.M.; Chen, S.H. Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer. Infrared Phys. Technol. 2013, 57, 8–13. [Google Scholar] [CrossRef]
- Schäfer, J.; Hnilic, J.; Šperk, J.; Quade, A.; Kudrle, V.; Foest, R.; Vodák, J.; Zajίčková, L. Tetrakis (trimethylsilyloxy) silane for nanostructured SiO2-like films deposited by PECVD at atmospheric pressure. Surf. Coat. Technol. 2016, 295, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.Z.; Sakurai, T.; Maruta, K.; Matusita, A.; Matsumoto, S.; Saisho, S.; Kikuchi, K. Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin-films deposited by indirectly reactive sputtering technique. Vacuum 2000, 59, 755–763. [Google Scholar] [CrossRef]
- Degraaff, H.C.; Huybers, M.T.M. 1/f noise in polycrystalline silicon resistors. J. Appl. Phys. 1983, 54, 2504–2507. [Google Scholar] [CrossRef]
- Jang, S.L. A model of 1/f noise in polysilicon resistors. Solid-State Electron. 1990, 33, 1155–1162. [Google Scholar] [CrossRef]
- Morikawa, J.; Hayakawa, E.; Hashimoto, T. Micro-scale thermal analysis with cooled and uncooled infrared cameras. Proc. SPIE 2012, 8354, 835410. [Google Scholar] [CrossRef]
- Guo, Y.Z.; Luo, M.C.; Ma, H.L.; Zhu, H.Y.; Yu, L.; Yan, F.; Han, P.; Ji, X.L. Microbolometer with a salicided polysilicon thermistor in CMOS technology. Opt. Express 2021, 29, 37787–37796. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Ma, H.; Lan, J.; Liao, Y.; Ji, X. Impact of Various Thermistors on the Properties of Resistive Microbolometers Fabricated by CMOS Process. Micromachines 2022, 13, 1869. https://doi.org/10.3390/mi13111869
Guo Y, Ma H, Lan J, Liao Y, Ji X. Impact of Various Thermistors on the Properties of Resistive Microbolometers Fabricated by CMOS Process. Micromachines. 2022; 13(11):1869. https://doi.org/10.3390/mi13111869
Chicago/Turabian StyleGuo, Yaozu, Haolan Ma, Jiang Lan, Yiming Liao, and Xiaoli Ji. 2022. "Impact of Various Thermistors on the Properties of Resistive Microbolometers Fabricated by CMOS Process" Micromachines 13, no. 11: 1869. https://doi.org/10.3390/mi13111869
APA StyleGuo, Y., Ma, H., Lan, J., Liao, Y., & Ji, X. (2022). Impact of Various Thermistors on the Properties of Resistive Microbolometers Fabricated by CMOS Process. Micromachines, 13(11), 1869. https://doi.org/10.3390/mi13111869