Twisted Fiber Optic SPR Sensor for GDF11 Concentration Detection
Abstract
:1. Introduction
2. Fiber Optic SPR Sensing Structure and Principle
2.1. Sensor Structure and Fabrication
2.2. The Simulation and Verification Experiments of Beam Transmission Path
3. Sensor Fiber Type Optimization and Surface Functionalization
3.1. Sensor Fiber Type Optimization
3.2. Surface Functionalization of the Sensing Probe
- (1)
- The fiber optic twisted probe after plating gold film was placed in piranha solution (H2SO4:H2O2 = 3:1) to remove the dirt on the probe surface for 0.5 h. The probe was rinsed with deionized water and then blown dry. The fiber optic twisted probe was soaked for 3 h in the ZIF-67 solution with a concentration of 1 mg/mL. The ZIF-67 particles were well adsorbed on the gold film surface of the sensing probe. The scanning electron microscope photo was shown in Figure 5b;
- (2)
- The fiber optic twisted probe was loaded into a sealed reaction chamber. 3 mL of staphylococcal A protein (SPA) solution with a concentration of 1 μg/mL was injected into the reaction chamber with a syringe and stored at 10 °C for 3 h. The probe was rinsed with PBS buffer several times to remove the excess SPA residue on the surface and then air-dried naturally;
- (3)
- GDF11 antibody solution at a concentration of 50 μg/mL experienced carboxyl group activation by using EDC (0.2 mol/L)/NHS (0.05 mol/L). Activated GDF11 antibody solution was injected into the reaction chamber and stored at 10 °C for 3 h to ensure sufficient time for the antibody to bind to the sensor surface. The sensor was washed with PBS buffer to remove antibody molecules that were not immobilized on the sensor surface;
- (4)
- Then, 3 ml of bovine serum protein (BSA) at a concentration of 10 mg/mL was injected into the reaction chamber and stored at 10 °C for 0.5 h to occupy the non-specific binding sites on the sensor surface, followed by rinsing off the excess BSA using PBS buffer;
- (5)
- At this point, the surface functionalization of the step-index multimode twisted fiber SPR sensing probe was completed to obtain an SPR biosensor that can specifically detect GDF11. The sensor was further used for GDF11 concentration detection experiments.
4. Results
4.1. Experimental Test System Construction
4.2. Experimental Results of GDF11 Concentration Detection
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, Q.; Tu, M.L.; Li, C.J.; Jiang, T.J.; Liu, T.; Luo, X.H. GDF11 Inhibits Bone Formation by Activating Smad2/3 in Bone Marrow Mesenchymal Stem Cells. Calcif. Tissue. Int. 2016, 99, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Schafer, M.J.; Lebrasseur, N.K. The influence of GDF11 on brain fate and function. GeroScience 2019, 41, 1–11. [Google Scholar] [CrossRef]
- Loffredo, F.S.; Steinhauser, M.L.; Jay, S.M.; Gannon, J.; Pancoast, J.R.; Yalamanchi, P.; Sinha, M.; Dall’Osso, C.; Khong, D.; Shadrach, J.L. Growth Differentiation Factor 11 Is a Circulating Factor that Reverses Age-Related Cardiac Hypertrophy. Cell 2013, 153, 828–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egerman, M.A.; Cadena, S.M.; Gilbert, J.A.; Meyer, A.; Nelson, H.N.; Swalley, S.E.; Mallozzi, C.; Jacobi, C.; Jennings, L.; Clay, I. GDF11 Increases with Age and Inhibits Skeletal Muscle Regeneration. Cell Metab. 2015, 22, 164–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.H.; Wei, Y.; Liu, D.; Liu, F.; Li, X.S.; Pan, L.H.; Pang, Y.; Chen, D.L. Role of growth differentiation factor 11 in development, physiology and disease. Oncotarget 2017, 8, 81604–81616. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.; Vázquez-Villegas, P.; Rito-Palomares, M.; Martinez-Chapa, S.O. [SpringerBriefs in Applied Sciences and Technology] Enzyme-linked Immunosorbent Assay (ELISA)||Advantages, Disadvantages and Modifications of Conventional ELISA. Springer 2018, 5, 67–115. [Google Scholar]
- Liu, G.; Zhao, J.; Wang, S.; Lu, S.; Yang, X. Enzyme-induced in situ generation of polymer carbon dots for fluorescence immunoassay. Sens. Actuators. B Chem. 2020, 306, 127583–127591. [Google Scholar] [CrossRef]
- An, N.; Li, K.; Zhang, Y.; Wen, T.; Jin, W. A multiplex and regenerable surface plasmon resonance (MR-SPR) biosensor for DNA detection of genetically modified organisms. Talanta 2021, 231, 122361–122368. [Google Scholar] [CrossRef]
- Dong, J.L.; Zhang, Y.X.; Wang, Y.J.; Yang, F.; Hu, S. Side-polished few-mode fiber based surface plasmon resonance biosensor. Opt. Express. 2019, 27, 11348–11360. [Google Scholar] [CrossRef]
- Ravindran, N.; Kumar, S.; Yashini, M.; Rajeshwari, S.; Mamathi, C.A.; Nirmal, T.S.; Sunil, C.K. Recent advances in Surface Plasmon Resonance (SPR) biosensors for food analysis, a review. Crit. Rev. Food. Sci. Nutr. 2021, 1–23. [Google Scholar] [CrossRef]
- Hayashi, Y.; Mikawa, S.; Masumoto, K.; Katou, F.; Sato, K. GDF11 expression in the adult rat central nervous system. J. Chem. Neuroanat. 2018, 89, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Pan, L.H.; Pang, Y.; Yang, J.X.; Lv, M.J.; Liu, F.; Chen, X.X.; Gong, H.J.; Liu, D. GDF11/BMP11 as a novel tumor marker for liver cancer. Exp. Ther. Med. 2018, 15, 3495–3500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteban, O.; Naranjo, F.B.; Diaz-Herrera, N.; Valdueza-Felip, S.; María-Cruz, N.; González-Canobet, A. High-sensitive SPR sensing with Indium Nitride as a dielectric overlay of optical fibers. Sens. Actuators. B Chem. 2011, 158, 372–376. [Google Scholar] [CrossRef]
- Cennamo, N.; Arcadio, F.; Zeni, L.; Catalano, E.; Del Prete, D.; Buonanno, G.; Minardo, A. The Role of Tapered Light-Diffusing Fibers in Plasmonic Sensor Configurations. Sensors 2021, 21, 6333. [Google Scholar] [CrossRef]
- Wei, Y.; Li, L.; Liu, C.; Wang, R.; Zhao, X.; Ran, Z.; Jiang, T. High sensitivity fiber cladding SPR strain sensor based on V-groove structure. Opt. Express. 2022, 30, 7412–7425. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, F.; Zhang, X.; Liu, Q.; Lu, M.; Ji, W.; Zhang, Y.; Jing, Z.; Peng, W. TFBG-SPR DNA-Biosensor for Renewable Ultra-Trace Detection of Mercury Ions. J. Light. Technol. 2021, 39, 3903–3910. [Google Scholar] [CrossRef]
- Huang, C.; Zhou, Y.; Yu, G.; Zeng, J.; Li, Q.; Shen, K.; Wu, X.; Guo, R.; Zhang, C.; Zheng, B.; et al. Glutathione-functionalized long-period fiber gratings sensor based on surface plasmon resonance for detection of As(3+) ions. Nanotechnology 2021, 32, 485501. [Google Scholar] [CrossRef]
- Jiang, C.; Liu, Y.; Huang, L.; Mou, C. Double Cladding Fiber Chiral Long-Period Grating-Based Directional Torsion Sensor. IEEE. Photonics. Technol. Lett. 2019, 31, 1522–1525. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, H.; Yuan, L. Directional torsion and strain discrimination based on Mach-Zehnder interferometer with off-axis twisted deformations. Opt. Laser. Technol. 2019, 120, 105754–105761. [Google Scholar] [CrossRef]
- Gahlaut, S.K.; Pathak, A.; Gupta, B.D.; Singh, J.P. Portable fiber-optic SPR platform for the detection of NS1-antigen for dengue diagnosis. Biosens. Bioelectron. 2022, 196, 113720–113728. [Google Scholar] [CrossRef]
- Wang, Q.; Jing, J.Y.; Wang, B.T. Highly Sensitive SPR Biosensor Based on Graphene Oxide and Staphylococcal Protein A Co-Modified TFBG for Human IgG Detection. IEEE. Trans. Instrum. Meas. 2018, 68, 3350–3357. [Google Scholar] [CrossRef]
- Pham, X.; Si, J.; Chen, T.; Chah, K.; Zubia, J.; Villatoro, J.; Caucheteur, C. Demodulation method for tilted fiber Bragg grating refractometer with high sensitivity. J. Appl. Phys. 2018, 123, 174501. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.F.; Deng, Z.Q.; Zhao, Y.; Li, J.; Wang, Q. Sensing Properties of Long Period Fiber Grating Coated by Silver Film. IEEE Photonics Technol. Lett. 2015, 27, 46–49. [Google Scholar] [CrossRef]
- Shi, S.; Wang, L.; Su, R.; Liu, B.; Huang, R.; Qi, W.; He, Z. A polydopamine-modified optical fiber SPR biosensor using electroless-plated gold films for immunoassays. Biosens. Bioelectron. 2015, 74, 454–460. [Google Scholar] [CrossRef]
- Mohseni, S.; Moghadam, T.T.; Dabirmanesh, B.; Jabbari, S.; Khajeh, K. Development of a label-free SPR sensor for detection of matrixmetalloproteinase-9 by antibody immobilization on carboxymethyldextran chip. Biosens. Bioelectron. 2016, 81, 510–516. [Google Scholar] [CrossRef]
- Li, C.; Gao, J.; Shafi, M.; Liu, R.; Zha, Z.; Feng, D.; Liu, M.; Du, X.; Yue, W.; Jiang, S. Optical fiber SPR biosensor complying with a 3D composite hyperbolic metamaterial and a graphene film. Photonics Res. 2021, 9, 379–388. [Google Scholar] [CrossRef]
- Lu, M.; Peng, W.; Lin, M.; Wang, F.; Zhang, Y. Gold Nanoparticle-Enhanced Detection of DNA Hybridization by a Block Copolymer-Templating Fiber-Optic Localized Surface Plasmon Resonance Biosensor. Nanomaterials 2021, 11, 616. [Google Scholar] [CrossRef]
Sensing Principle | PROCESSING METHOD | Refractive Index Sensing Performance | Physical Strength | Reference |
---|---|---|---|---|
SPR | Taper | 1780 nm/RIU | Weak | [14] |
SPR | Laser beam modulation engraving | 2896.4 nm/RIU | Weak | [15] |
TFBG-SPR | Phase mask | 1023 nm/RIU | Strong | [22] |
LPG-SPR | Laser beam modulation engraving | 1600 nm/RIU | Strong | [23] |
SPR | Hot-melt torsion | 3391.15 nm/RIU | Strong | This work |
Sensing Principle | Detection Substances | Detection Range | Detection Limitation | Reference |
---|---|---|---|---|
SPR | IgG | 2 mg/mL–100 mg/mL | 0.90 μg/mL | [24] |
SPR | MMP-9 | 10 ng/mL–200 ng/mL | 8 pg/mL | [25] |
SPR | DNA | 10 pM–100 pM | 10 pM | [26] |
TFBG-SPR | Hg2+ | 10 pM–1 mM | 3.073 pM | [16] |
LPG-SPR | As3+ | 0–0.2 ppb | 0.04 ppb | [17] |
LSPR | DNA | 100 pM–1 μM | 67 pM | [27] |
SPR | GDF11 | 1 pg/mL–10 ng/mL | 0.34 pg/mL | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Ran, Z.; Wang, R.; Ren, Z.; Liu, C.-L.; Liu, C.-B.; Shi, C.; Wang, C.; Zhang, Y.-H. Twisted Fiber Optic SPR Sensor for GDF11 Concentration Detection. Micromachines 2022, 13, 1914. https://doi.org/10.3390/mi13111914
Wei Y, Ran Z, Wang R, Ren Z, Liu C-L, Liu C-B, Shi C, Wang C, Zhang Y-H. Twisted Fiber Optic SPR Sensor for GDF11 Concentration Detection. Micromachines. 2022; 13(11):1914. https://doi.org/10.3390/mi13111914
Chicago/Turabian StyleWei, Yong, Ze Ran, Rui Wang, Zhuo Ren, Chun-Lan Liu, Chun-Biao Liu, Chen Shi, Chen Wang, and Yong-Hui Zhang. 2022. "Twisted Fiber Optic SPR Sensor for GDF11 Concentration Detection" Micromachines 13, no. 11: 1914. https://doi.org/10.3390/mi13111914
APA StyleWei, Y., Ran, Z., Wang, R., Ren, Z., Liu, C.-L., Liu, C.-B., Shi, C., Wang, C., & Zhang, Y.-H. (2022). Twisted Fiber Optic SPR Sensor for GDF11 Concentration Detection. Micromachines, 13(11), 1914. https://doi.org/10.3390/mi13111914