Effect of Punch Surface Microtexture on the Microextrudability of AA6063 Micro Backward Extrusion
Abstract
:1. Introduction
2. Materials and Methods
3. Experimental Results and Discussion
3.1. Extrusion Force–Ram Stroke Diagram and Metal Flow during Backward Microextrusion
3.2. Evaluation of Adhesion to Punch
3.3. Microstructure Analysis of the Extrusion
3.4. Comparison of Microtexture and Nanotexture Punches
4. Conclusions
- The tool surfaces were textured from the millimeter to nanometer scale using electrical discharge machining, polishing, and an ultrashort pulsed laser.
- The extrusion force–stroke diagram for the micro-anteroposterior extrusion process increased the extrusion force gradually with an increase in stroke. The extrusion force was reduced by adding microscale texture to the punch surface.
- The EPMA evaluation of the punch surface adhesion revealed that the punches with no texture and millimeter-scale texture showed more adhesion to the punch, and the amount of adhesion decreased as the texture size reduced.
- IPF and KAM maps obtained via EBSD show that micro- and nano-textures on the punch surface improved material flow. A more uniform strain on the product was observed, particularly in the case of nano-textures.
- Repeated experiments showed that the extrusion force and adhesion to the punch increased with increasing extrusion frequency for the microscale texture. For the nanotextured punches, the extrusion force decreased with increasing extrusion frequency, while adhesion to the punches decreased.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jain, V.K. Microforming. In Microfacturing Processes, 1st ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 16–18. [Google Scholar] [CrossRef]
- Engel, U.; Eckstein, R. Microforming—From basic research to its realization. J. Mater. Process. Technol. 2002, 125, 35–44. [Google Scholar] [CrossRef]
- Egerer, E.; Engel, U. Process Characterization and Material Flow in Microforming at Elevated Temperatures. J. Manuf. Process. 2004, 6, 1–6. [Google Scholar] [CrossRef]
- Bunget, C.; Ngaile, G. Influence of ultrasonic vibration on micro-extrusion. Ultrasonics 2011, 51, 606–616. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Lei, Y.; Zhang, H.; Zhang, Z.; Sheng, Y.; Han, G. Research on the Micro-Extrusion Process of Copper T2 with Different Ultrasonic Vibration Modes. Metals 2019, 9, 1209. [Google Scholar] [CrossRef] [Green Version]
- Lou, Y.; Liu, X.; He, J.; Long, M. Ultrasonic-Assisted extrusion of ZK60 Mg alloy micropins at room temperature. Ultrasonics 2018, 83, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.-L.; Fu, M.; Lu, J. Experimental and simulation study of deformation behavior in micro-compound extrusion process. Mater. Des. 2011, 32, 525–534. [Google Scholar] [CrossRef]
- Chan, W.; Fu, M.; Yang, B. Study of size effect in micro-extrusion process of pure copper. Mater. Des. 2011, 32, 3772–3782. [Google Scholar] [CrossRef]
- Cao, J.; Krishnan, N.; Wang, Z.; Lu, H.; Liu, W.K.; Swanson, A. Microforming: Experimental Investigation of the Extrusion Process for Micropins and its Numerical Simulation Using RKEM. J. Manuf. Sci. Eng. 2004, 126, 642–652. [Google Scholar] [CrossRef]
- Parasiz, S.A.; Kinsey, B.; Krishnan, N.; Cao, J.; Li, M. Investigation of Deformation Size Effects During Microextrusion. J. Manuf. Sci. Eng. 2006, 129, 690–697. [Google Scholar] [CrossRef]
- Parasız, S.A.; Kinsey, B.L.; Mahayatsanun, N.; Cao, J. Effect of specimen size and grain size on deformation in microextrusion. J. Manuf. Process. 2011, 13, 153–159. [Google Scholar] [CrossRef]
- Krishnan, N.; Cao, J.; Dohda, K. Study of the Size Effect on Friction Conditions in Microextrusion—Part I: Microextrusion Experiments and Analysis. J. Manuf. Sci. Eng. 2006, 129, 669–676. [Google Scholar] [CrossRef]
- Fu, M.W.; Chan, W.-L. A review on the state-of-the-art microforming technologies. Int. J. Adv. Manuf. Technol. 2012, 67, 2411–2437. [Google Scholar] [CrossRef]
- Singh, M.; Singh, A.K. Magnetorheological finishing of micro-punches for enhanced performance of micro-extrusion process. Mater. Manuf. Process. 2019, 34, 1646–1657. [Google Scholar] [CrossRef]
- Obikawa, T.; Kamio, A.; Takaoka, H.; Osada, A. Micro-Texture at the coated tool face for high performance cutting. Int. J. Mach. Tools Manuf. 2011, 51, 966–972. [Google Scholar] [CrossRef]
- Kawasegi, N.; Ozaki, K.; Morita, N.; Nishimura, K.; Yamaguchi, M. Development and machining performance of a textured diamond cutting tool fabricated with a focused ion beam and heat treatment. Precis. Eng. 2017, 47, 311–320. [Google Scholar] [CrossRef]
- Patel, K.; Liu, G.; Shah, S.R.; Özel, T. Effect of Micro-Textured Tool Parameters on Forces, Stresses, Wear Rate, and Variable Friction in Titanium Alloy Machining. J. Manuf. Sci. Eng. 2019, 142, 021007. [Google Scholar] [CrossRef]
- Funazuka, T.; Takatsuji, N.; Dohda, K.; Aizawa, T. Effect of Grain Size on Formability in Micro-extrusion—Research on Micro Forward-Backward Extrusion of Aluminum Alloy 1st report. J. Jpn. Soc. Technol. Plast. 2018, 59, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Funazuka, T.; Takatsuji, N.; Dohda, K.; Mahayotsanun, N. Effect of Die Angle and Friction Condition on Formability in Micro Extrusion—Research on Micro Forward-Backward Extrusion of Aluminum Alloy 2nd Report. J. Jpn. Soc. Technol. Plast. 2018, 59, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Preedawiphat, P.; Mahayotsanun, N.; Sucharitpwatskul, S.; Funazuka, T.; Takatsuji, N.; Bureerat, S.; Dohda, K. Finite Element Analysis of Grain Size Effects on Curvature in Micro-Extrusion. Appl. Sci. 2020, 10, 4767. [Google Scholar] [CrossRef]
- Funazuka, T.; Dohda, K.; Shiratori, T.; Hiramiya, R.; Watanabe, I. Effect of Punch Surface Grooves on Microformability of AA6063 Backward Microextrusion. Micromachines 2021, 12, 1299. [Google Scholar] [CrossRef]
- Aizawa, T.; Shiratori, T.; Kira, Y.; Inohara, T. Simultaneous Nano-Texturing onto a CVD-Diamond Coated Piercing Punch with Femtosecond Laser Trimming. Appl. Sci. 2020, 10, 2674. [Google Scholar] [CrossRef]
- Komori, Y.; Suzuki, Y.; Abe, K.; Aizawa, T.; Shiratori, T. Fine Piercing of Amorphous Electrical Steel Sheet Stack by Micro-/Nano-Textured Punch. Materials 2022, 15, 1682. [Google Scholar] [CrossRef] [PubMed]
Item | Value and Figure |
---|---|
Shape of billet | φ 1.70 × 4 (mm) |
Vickers hardness | 33.2 (HV) |
F | 169.0 (MPa) |
n | 0.29 |
Microstructure | |
Grain distribution | |
Average grain size | 23.3 (μm) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Funazuka, T.; Dohda, K.; Shiratori, T.; Horiuchi, S.; Watanabe, I. Effect of Punch Surface Microtexture on the Microextrudability of AA6063 Micro Backward Extrusion. Micromachines 2022, 13, 2001. https://doi.org/10.3390/mi13112001
Funazuka T, Dohda K, Shiratori T, Horiuchi S, Watanabe I. Effect of Punch Surface Microtexture on the Microextrudability of AA6063 Micro Backward Extrusion. Micromachines. 2022; 13(11):2001. https://doi.org/10.3390/mi13112001
Chicago/Turabian StyleFunazuka, Tatsuya, Kuniaki Dohda, Tomomi Shiratori, Syunsuke Horiuchi, and Ikumu Watanabe. 2022. "Effect of Punch Surface Microtexture on the Microextrudability of AA6063 Micro Backward Extrusion" Micromachines 13, no. 11: 2001. https://doi.org/10.3390/mi13112001
APA StyleFunazuka, T., Dohda, K., Shiratori, T., Horiuchi, S., & Watanabe, I. (2022). Effect of Punch Surface Microtexture on the Microextrudability of AA6063 Micro Backward Extrusion. Micromachines, 13(11), 2001. https://doi.org/10.3390/mi13112001