Numerical Analysis of Multi-Angle Precision Microcutting of a Single-Crystal Copper Surface Based on Molecular Dynamics
Abstract
:1. Introduction
2. Model Establishment and Selection of Potential Function
2.1. Establishment of Microcutting Model for Boron Nitride Particles
2.2. Selection of Potential Function
2.2.1. EAM Potential Function
2.2.2. Morse Potential Function
2.2.3. Tersoff Potential Function
3. Analysis and Discussion
3.1. Cutting Force Analysis
3.2. Energy Analysis
3.3. Atomic Displacement Analysis
3.4. Dislocation Line Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Han, S.; Salvatore, F.; Rech, J. Residual stress profiles induced by abrasive flow machining (AFM) in 15-5PH stainless steel internal channel surfaces. J. Mater. Processing Technol. 2019, 267, 348–358. [Google Scholar] [CrossRef]
- Sushil, M.; Vinod, K.; Harmesh, K. Multi-objective optimization of process parameters involved in micro-finishing of Al/SiC MMCs by abrasive flow machining process. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2018, 232, 319–332. [Google Scholar] [CrossRef]
- Zhang, L.; Yuan, Z.; Qi, Z.; Cai, D.; Cheng, Z.; Qi, H. CFD-based study of the abrasive flow characteristics within constrained flow passage in polishing of complex titanium alloy surfaces. Powder Technol. 2018, 333, 209–218. [Google Scholar] [CrossRef]
- Duval-Chaneac, M.S.; Han, S.; Claudin, C.; Salvatore, F.; Bajolet, J.; Rech, J. Experimental study on finishing of internal laser melting (SLM) surface with abrasive flow machining (AFM). Precis. Eng. 2018, 54, 1–6. [Google Scholar] [CrossRef]
- Gov, K.; Eyercioglu, O. Effects of abrasive types on the surface integrity of abrasive-flow-machined surfaces. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2018, 232, 1044–1053. [Google Scholar] [CrossRef]
- Sambharia, J.K.; Mali, H.S.; Garg, V. Experimental investigation on unidirectional abrasive flow machining of trim die workpiece. Mater. Manuf. Process. 2018, 33, 651–660. [Google Scholar] [CrossRef]
- Dong, Z.; Ya, G.; Liu, J. Study on machining mechanism of high viscoelastic abrasive flow machining for surface finishing. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2017, 231, 608–617. [Google Scholar] [CrossRef]
- Wang, T.; Chen, D.; Zhang, W.; An, L. Study on key parameters of a new abrasive flow machining (AFM) process for surface finishing. Int. J. Adv. Manuf. Technol. 2019, 101, 39–54. [Google Scholar] [CrossRef]
- Wei, H.; Peng, C.; Gao, H.; Wang, X.; Wang, X. On establishment and validation of a new predictive model for material removal in abrasive flowmachining. Int. J. Mach. Tools Manuf. 2019, 138, 66–79. [Google Scholar] [CrossRef]
- Yuan, S.; Guo, X.; Lu, M.; Jin, Z.; Kang, R.; Guo, D. Diamond nanoscale surface processing and tribochemical wear mechanism. Diam. Relat. Mater. 2019, 94, 8–13. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, F.; Chen, J. A study of ultraprecision mechanical polishing of single-crystal silicon with laser nano-structured diamond abrasive by molecular dynamics simulation. Int. J. Mech. Sci. 2019, 157–158, 254–266. [Google Scholar] [CrossRef]
- Oren, E.; Yahel, E.; Makov, G. Kinetics of dislocation cross-slip: A molecular dynamics study. Comput. Mater. Sci. 2017, 138, 246–254. [Google Scholar] [CrossRef]
- Zhou, P.; Shi, X.; Li, J.; Sun, T.; Zhu, Y.; Wang, Z.; Chen, J. Molecular dynamics simulation of SiC removal mechanism in a fixed abrasive polishing process. Ceram. Int. 2019, 45, 14614–14624. [Google Scholar] [CrossRef]
- Li, Y.; Shuai, M.; Zhang, J.; Zheng, H.; Sun, T.; Yang, Y. Molecular Dynamics Investigation of Residual Stress and Surface Roughness of Cerium under Diamond Cutting. Micromachines 2018, 9, 386. [Google Scholar] [CrossRef] [Green Version]
- Alabd Alhafez, I.; Urbassek, H.M. Orientation dependence in nanocutting of Fe single crystals: A molecular-dynamics study. Comput. Mater. Sci. 2018, 143, 286–294. [Google Scholar] [CrossRef]
- Yue, X.; Yang, X. Molecular dynamics simulation of machining properties of polycrystalline copper in electrical discharge machining. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 371–380. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, H.; Shuai, M.; Li, Y.; Yang, Y.; Sun, T. Molecular Dynamics Modeling and Simulation of Diamond Cutting of Cerium. Nanoscale Res. Lett. 2017, 12, 464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Q.; Tian, Y.; Li, J.; Wang, Q.; Wu, H. Interface-governed nanometric machining behaviour of Cu/Ag bilayers using molecular dynamics simulation. RSC Adv. 2019, 9, 1341–1353. [Google Scholar] [CrossRef] [Green Version]
- Dai, H.; Li, S.; Chen, G. Comparison of subsurface damages on mono-crystalline silicon between traditional nanoscale machining and laser-assisted nanoscale machining via molecular dynamics simulation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2018, 414, 61–67. [Google Scholar] [CrossRef]
- Dong, G.; Wang, X.; Gao, S. Molecular dynamics simulation and experiment research of cutting-tool wear mechanism for cutting aluminum alloy. Int. J. Adv. Manuf. Technol. 2018, 96, 1123–1137. [Google Scholar] [CrossRef]
- Zou, L.; Yin, J.; Huang, Y.; Zhou, M. Essential causes for tool wear of single crystal diamond in ultra-precision cutting of ferrous metals. Diam. Relat. Mater. 2018, 86, 29–40. [Google Scholar] [CrossRef]
- Daw, M.S.; Baskes M, I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 1984, 29, 6443–6453. [Google Scholar] [CrossRef] [Green Version]
- Girifalco, L.A.; Weizer V, G. Application of the Morse potential function to cubic metals. Phys. Rev. 1959, 114, 687–690. [Google Scholar] [CrossRef]
- Tersoff, J. Modeling solid-state chemistry:Interatomic potentials for multicomponent systems. Phys. Rev. B 1989, 39, 556. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Dong, L.; Li, J.; Dong, K.; Wang, T.; Zhao, Z. Numerical Analysis of Multi-Angle Precision Microcutting of a Single-Crystal Copper Surface Based on Molecular Dynamics. Micromachines 2022, 13, 263. https://doi.org/10.3390/mi13020263
Liu J, Dong L, Li J, Dong K, Wang T, Zhao Z. Numerical Analysis of Multi-Angle Precision Microcutting of a Single-Crystal Copper Surface Based on Molecular Dynamics. Micromachines. 2022; 13(2):263. https://doi.org/10.3390/mi13020263
Chicago/Turabian StyleLiu, Jianhe, Liguang Dong, Junye Li, Kun Dong, Tiancheng Wang, and Zhenguo Zhao. 2022. "Numerical Analysis of Multi-Angle Precision Microcutting of a Single-Crystal Copper Surface Based on Molecular Dynamics" Micromachines 13, no. 2: 263. https://doi.org/10.3390/mi13020263
APA StyleLiu, J., Dong, L., Li, J., Dong, K., Wang, T., & Zhao, Z. (2022). Numerical Analysis of Multi-Angle Precision Microcutting of a Single-Crystal Copper Surface Based on Molecular Dynamics. Micromachines, 13(2), 263. https://doi.org/10.3390/mi13020263