Ultrathin Optics-Free Spectrometer with Monolithically Integrated LED Excitation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Z.; Albrow-Owen, T.; Cai, W.; Hasan, T. Miniaturization of Optical Spectrometers. Science 2021, 371, eabe0722. [Google Scholar] [CrossRef] [PubMed]
- Bacon, C.P.; Mattley, Y.; DeFrece, R. Miniature Spectroscopic Instrumentation: Applications to Biology and Chemistry. Rev. Sci. Instrum. 2004, 75, 1–16. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Lyon, J.G. Hyperspectral Remote Sensing of Vegetation; CRC Press: Boca Raton, FL, USA, 2016; ISBN 9781439845387. [Google Scholar]
- Chin, C.D.; Linder, V.; Sia, S.K. Lab-on-a-Chip Devices for Global Health: Past Studies and Future Opportunities. Lab A Chip 2007, 7, 41–57. [Google Scholar] [CrossRef] [PubMed]
- Khan, Y.; Han, D.; Pierre, A.; Ting, J.; Wang, X.; Lochner, C.M.; Bovo, G.; Yaacobi-Gross, N.; Newsome, C.; Wilson, R.; et al. A Flexible Organic Reflectance Oximeter Array. Proc. Natl. Acad. Sci. USA 2018, 115, E11015–E11024. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.J.; Naudé, N.; Chang, Y.C.; Crivaro, A.; Kamoun, M.; Wang, P.; Li, L. An Ultra-Low-Cost Smartphone Octochannel Spectrometer for Mobile Health Diagnostics. J. Biophotonics 2018, 11, e201700382. [Google Scholar] [CrossRef] [PubMed]
- Cai, F.; Lu, W.; Shi, W.; He, S. A Mobile Device-Based Imaging Spectrometer for Environmental Monitoring by Attaching a Lightweight Small Module to a Commercial Digital Camera. Sci. Rep. 2017, 7, 15602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardie, K.; Agne, S.; Kuntz, K.B.; Jennewein, T. Inexpensive LED-Based Optical Coating Sensor. IEEE Sens. J. 2017, 17, 6224–6231. [Google Scholar] [CrossRef]
- De Lima, K.M.G. A Portable Photometer Based on LED for the Determination of Aromatic Hydrocarbons in Water. Microchem. J. 2012, 103, 62–67. [Google Scholar] [CrossRef]
- Nugroho, F.A.A.; Darmadi, I.; Cusinato, L.; Susarrey-Arce, A.; Schreuders, H.; Bannenberg, L.J.; da Silva Fanta, A.B.; Kadkhodazadeh, S.; Wagner, J.B.; Antosiewicz, T.J.; et al. Metal–Polymer Hybrid Nanomaterials for Plasmonic Ultrafast Hydrogen Detection. Nat. Mater. 2019, 18, 489–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OceanOptics Water Quality Monitoring: Chlorophyll a and Suspended Solids. 2015. Available online: https://oceanoptics.com/wp-content/uploads/OceanView_Water-Quality-Monitoring.pdf (accessed on 17 January 2022).
- Candès, E.J.; Romberg, J.; Tao, T. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef] [Green Version]
- Bao, J.; Bawendi, M.G. A Colloidal Quantum Dot Spectrometer. Nature 2015, 523, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Guyot-Sionnest, P.; Ackerman, M.M.; Tang, X. Colloidal Quantum Dots for Infrared Detection beyond Silicon. J. Chem. Phys. 2019, 151, 060901. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Yu, Z. Spectral Analysis Based on Compressive Sensing in Nanophotonic Structures. Opt. Express 2014, 22, 25608. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Liu, H.; Wang, X.; Zhang, X.; Shan, Z.; Zheng, W.; Li, H.; Wang, X.; Zhu, X.; Jiang, Y.; et al. Wavelength Selective Photodetectors Integrated on a Single Composition-Graded Semiconductor Nanowire. Adv. Opt. Mater. 2018, 6, 1800293. [Google Scholar] [CrossRef]
- Wang, Z.; Yi, S.; Chen, A.; Zhou, M.; Luk, T.S.; James, A.; Nogan, J.; Ross, W.; Joe, G.; Shahsafi, A.; et al. Single-Shot on-Chip Spectral Sensors Based on Photonic Crystal Slabs. Nat. Commun. 2019, 10, 1020. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Albrow-Owen, T.; Cui, H.; Alexander-Webber, J.; Gu, F.; Wang, X.; Wu, T.C.; Zhuge, M.; Williams, C.; Wang, P.; et al. Single-Nanowire Spectrometers. Science 2019, 365, 1017–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laux, E.; Genet, C.; Skauli, T.; Ebbesen, T.W. Plasmonic Photon Sorters for Spectral and Polarimetric Imaging. Nat. Photonics 2008, 2, 161–164. [Google Scholar] [CrossRef]
- Park, H.; Dan, Y.; Seo, K.; Yu, Y.J.; Duane, P.K.; Wober, M.; Crozier, K.B. Filter-Free Image Sensor Pixels Comprising Silicon Nanowires with Selective Color Absorption. Nano Lett. 2014, 14, 1804–1809. [Google Scholar] [CrossRef]
- Sarwar, T.; Cheekati, S.; Chung, K.; Ku, P.-C. On-Chip Optical Spectrometer Based on GaN Wavelength-Selective Nanostructural Absorbers. Appl. Phys. Lett. 2020, 116, 081103. [Google Scholar] [CrossRef]
- Kim, J.; Cheekati, S.; Sarwar, T.; Ku, P. Designing an Ultrathin Film Spectrometer Based on III-Nitride Light-Absorbing Nanostructures. Micromachines 2021, 12, 760. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Lee, W.-B.; Lee, S.K.; Lee, Y.T.; Lee, H.-N. Fabrication of 2D Thin-Film Filter-Array for Compressive Sensing Spectroscopy. Opt. Lasers Eng. 2019, 115, 53–58. [Google Scholar] [CrossRef]
- Kurokawa, U.; Choi, B.I.; Chang, C.C. Filter-Based Miniature Spectrometers: Spectrum Reconstruction Using Adaptive Regularization. IEEE Sens. J. 2011, 11, 1556–1563. [Google Scholar] [CrossRef]
- Brown, C.; Goncharov, A.; Ballard, Z.S.; Fordham, M.; Clemens, A.; Qiu, Y.; Rivenson, Y.; Ozcan, A. Neural Network-Based On-Chip Spectroscopy Using a Scalable Plasmonic Encoder. ACS Nano 2021, 15, 6305–6315. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Dong, Y.; Fu, H.; Huang, S.L.; Zhang, L. A Spectral Reconstruction Algorithm of Miniature Spectrometer Based on Sparse Optimization and Dictionary Learning. Sensors 2018, 18, 644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, J.; Cadusch, J.J.; Crozier, K.B. Plasmonic Mid-Infrared Filter Array-Detector Array Chemical Classifier Based on Machine Learning. ACS Photonics 2021, 8, 648–657. [Google Scholar] [CrossRef]
- Oliver, J.; Lee, W.; Park, S.; Lee, H.-N. Improving Resolution of Miniature Spectrometers by Exploiting Sparse Nature of Signals. Opt. Express 2012, 20, 2613. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Crozier, K.B. Vertically Stacked Photodetector Devices Containing Silicon Nanowires with Engineered Absorption Spectra. ACS Photonics 2015, 2, 544–549. [Google Scholar] [CrossRef] [Green Version]
- Rae, B.R.; Griffin, C.; McKendry, J.; Girkin, J.M.; Zhang, H.X.; Gu, E.; Renshaw, D.; Charbon, E.; Dawson, M.D.; Henderson, R.K. CMOS Driven Micro-Pixel LEDs Integrated with Single Photon Avalanche Diodes for Time Resolved Fluorescence Measurements. J. Phys. D Appl. Phys. 2008, 41, 094011. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, H.; Sun, H. Ultraviolet Optoelectronic Devices Based on AlGaN-SiC Platform: Towards Monolithic Photonics Integration System. Nano Energy 2020, 77, 105149. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, C.; Song, K.; Yu, H.; Xing, C.; Wang, D.; Liu, Z.; Sun, H. Compositionally Graded III-Nitride Alloys: Building Blocks for Efficient Ultraviolet Optoelectronics and Power Electronics. Rep. Prog. Phys. 2021, 84, 044401. [Google Scholar] [CrossRef]
- Lyu, Q.; Jiang, H.; Lau, K.M. Monolithic Integration of Ultraviolet Light Emitting Diodes and Photodetectors on a P-GaN/AlGaN/GaN/Si Platform. Opt. Express 2021, 29, 8358. [Google Scholar] [CrossRef] [PubMed]
- Teng, C.-H.; Zhang, L.; Deng, H.; Ku, P.-C. Strain-Induced Red-Green-Blue Wavelength Tuning in InGaN Quantum Wells. Appl. Phys. Lett. 2016, 108, 071104. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarwar, T.; Ku, P.-C. Ultrathin Optics-Free Spectrometer with Monolithically Integrated LED Excitation. Micromachines 2022, 13, 382. https://doi.org/10.3390/mi13030382
Sarwar T, Ku P-C. Ultrathin Optics-Free Spectrometer with Monolithically Integrated LED Excitation. Micromachines. 2022; 13(3):382. https://doi.org/10.3390/mi13030382
Chicago/Turabian StyleSarwar, Tuba, and Pei-Cheng Ku. 2022. "Ultrathin Optics-Free Spectrometer with Monolithically Integrated LED Excitation" Micromachines 13, no. 3: 382. https://doi.org/10.3390/mi13030382
APA StyleSarwar, T., & Ku, P. -C. (2022). Ultrathin Optics-Free Spectrometer with Monolithically Integrated LED Excitation. Micromachines, 13(3), 382. https://doi.org/10.3390/mi13030382