High-Property Refractive Index and Bio-Sensing Dual-Purpose Sensor Based on SPPs
Abstract
:1. Introduction
2. Materials and Methods
3. Simulations and Results
4. Application in Bio-Sensing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef]
- Wang, Z.L. A review on research progress in surface plasmons. Prog. Phys. 2009, 29, 287–324. [Google Scholar]
- Luo, X.G.; Yan, L.S. Surface plasmon polaritons and its applications. IEEE Photonics J. 2012, 4, 590–595. [Google Scholar]
- Law, M.; Sirbuly, D.J.; Johnson, J.C. Nanoribbon waveguides for subwavelength photonics integration. Science 2004, 305, 1269–1273. [Google Scholar] [CrossRef]
- Kresic, I.; Kruljac, M.; Ban, T.; Aumiler, D. Electromagnetically induced transparency with a single frequency comb mode probe. J. Opt. Soc. Am. B 2019, 36, 1758–1764. [Google Scholar] [CrossRef]
- Miroshnichenko, A.E.; Flach, S.; Kivshar, Y.S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 2010, 82, 2257–2298. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Su, Y.; Zhai, X.; Shang, X.; Xia, S.; Wang, L. High-Q multiple Fano resonances sensor in single dark mode metamaterial waveguide structure. IEEE Photonics Technol. Lett. 2018, 30, 2068–2071. [Google Scholar] [CrossRef]
- Yang, X.Y.; Hua, E.T.; Su, H.; Guo, J.; Yan, S.B. A nanostructure with defect based on Fano resonance for application on refractive-index and temperature sensing. Sensors 2020, 20, 4125. [Google Scholar] [CrossRef]
- Mathew, G.; Bhagyaraj, C.; Babu, A.; Mathew, V. Effect of gyrotropic substrates on the surface plasmon polaritons guided by metal films of finite width. J. Lightwave Technol. 2012, 30, 273–278. [Google Scholar] [CrossRef]
- Babu, A.; Bhagyaraj, C.; Jacob, J.; Mathew, G.; Mathew, V. Surface plasmon propagation in a metal strip waveguide with biaxial substrate. Opt. Quantum Electron. 2013, 45, 481–490. [Google Scholar] [CrossRef]
- Veronis, G.; Fan, S.H. Crosstalk between three-dimensional plasmonic slot waveguides. Opt. Express 2008, 16, 2129–2140. [Google Scholar] [CrossRef] [Green Version]
- Kong, D.Q.; Tsubokawa, M. Evaluation of slot-to-slot coupling between dielectric slot waveguides and metal-insulator-metal lot waveguides. Opt. Express 2015, 23, 19082–19091. [Google Scholar] [CrossRef]
- Horvath, C.; Bachman, D.; Wu, M.; Perron, D.; Van, V. Polymer hybrid plasmonic waveguides and microring resonators. IEEE Photonics Technol. Lett. 2011, 23, 1267–1269. [Google Scholar] [CrossRef]
- Bian, Y.S.; Zheng, Z.; Zhao, X.; Liu, L.; Su, Y.L.; Liu, J.S.; Zhu, J.S.; Zhou, T. Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove. J. Opt. 2013, 15, 055011. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Xu, Y.; Cao, J. Fano resonance sensing characteristics of MIM waveguide coupled square convex ring resonator with metallic baffle. Results Phys. 2019, 14, 102420. [Google Scholar] [CrossRef]
- Wen, K.H.; Hu, Y.H.; Chen, L.; Zhou, J.Y.; He, M.; Lei, L.; Meng, Z.M.; Wu, Y.J.; Li, J.F. Fano resonance based on end-coupled cascaded-ring MIM waveguides structure. Plasmonics 2017, 12, 1875–1880. [Google Scholar] [CrossRef]
- Qiao, L.T.; Zhang, G.M.; Wang, Z.S.; Fan, G.P.; Yan, Y.F. Study on the Fano resonance of coupling M-type cavity based on surface plasmon polaritons. Opt. Commun. 2019, 433, 144–149. [Google Scholar] [CrossRef]
- Xiao, G.L.; Xu, Y.P.; Yang, H.Y.; Ou, Z.T.; Chen, J.Y.; Li, H.O.; Liu, X.P.; Zeng, L.Z.; Li, J.Q. High sensitivity plasmonic sensor based on Fano resonance with inverted U-shaped resonator. Sensors 2021, 21, 1164. [Google Scholar] [CrossRef]
- Chen, J.J.; Li, Z.; Li, J.; Gong, Q.H. Compact and high-resolution plasmonic wavelength demultiplexers based on Fano interference. Opt. Express 2011, 19, 9976–9985. [Google Scholar] [CrossRef]
- Par, J.; Kim, H.; Lee, B. High order plasmonic Bragg reflection in the metal–insulator–metal waveguide Bragg grating. Opt. Express 2008, 16, 413–425. [Google Scholar]
- Wang, B.; Wang, G.P. Plasmon Bragg reflectors and nanocavities on flat metallic surfaces. Appl. Phys. Lett. 2005, 87, 013107. [Google Scholar] [CrossRef]
- Hwang, Y.; Kim, J.E.; Park, H.Y. Frequency selective metal-insulator-metal splitters for surface plasmons. Opt. Commun. 2011, 284, 4778–4781. [Google Scholar] [CrossRef]
- Chen, C.H.; Liao, K.S. 1 × N plasmonic power splitters based on metal-insulator-metal waveguides. Opt. Express 2013, 21, 4036–4043. [Google Scholar] [CrossRef]
- Kosaka, P.M.; Pini, V.; Ruz, J.J.; da Silva, R.A.; Gonzalez, M.U.; Ramos, D.; Calleja, M.; Tamayo, J. Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor. Nat. Nanotechnol. 2014, 9, 1047–1053. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Z.H.; Yang, H.; Wen, L.H.; Yi, Z.; Zhou, Z.G.; Dai, B.; Zhang, J.G.; Wu, X.W.; Wu, P.H. Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene. RSC Adv. 2022, 12, 7821–7829. [Google Scholar] [CrossRef]
- Zhou, F.Q.; Qin, F.; Yi, Z.; Yao, W.T.; Liu, Z.M.; Wu, X.W.; Wu, P.H. Ultra-wideband and wide-angle perfect solar energy absorber based on Ti nanorings surface plasmon resonance. Phys. Chem. Chem. Phys. 2021, 23, 17041–17048. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Xu, Q. A MIM filter based on a side-coupled crossbeam square ring resonator. Plasmonics 2016, 11, 1291–1296. [Google Scholar] [CrossRef]
- Zand, I.; Abrishamian, M.S.; Berini, P. Highly tunable nanoscale metal-insulator-metal split ring core ring resonators (SRCRRs). Opt. Express 2013, 21, 79–86. [Google Scholar] [CrossRef]
- Dionne, J.A.; Sweatlock, L.A.; Atwater, H.A.; Polman, A. Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 2006, 73, 035407. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.H.; Wang, Q.J.; Shum, P.; Huang, X.G. A simple nanometeric plasmonic narrow-band filter structure based on metalinsulator-metal waveguide. IEEE Trans. Nanotechol. 2011, 10, 1371–1376. [Google Scholar] [CrossRef]
- Hu, F.; Yi, H.; Zhou, Z. Wavelength demultiplexing structure based on arrayed plasmonic slot cavities. Opt. Lett. 2011, 36, 1500–1502. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, Y.; Jiao, R. Fano resonances based on multimode and degenerate mode interference in plasmonic resonator system. Opt. Express 2017, 25, 3525–3533. [Google Scholar] [CrossRef]
- Qi, Y.P.; Zhang, T.; Guo, J.; Zhang, B.H.; Wang, X.X. High performance temperature and refractive index dual-purpose sensor based on the ethanol-sealed metal-dielectric-metal waveguide. Acta Phys. Sin. 2020, 69, 167301. [Google Scholar] [CrossRef]
- Mayer, K.M.; Hafner, J.H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Liu, X.M.; Mao, D.; Wang, G.X. Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Opt. Lett. 2012, 37, 3780–3782. [Google Scholar] [CrossRef]
- Gric, T.; Eldlio, M.; Cada, M.; Pistora, J. Analytic solution to field distribution in two-dimensional inhomogeneous waveguides. J. Electromagn. Waves Appl. 2015, 29, 1068–1081. [Google Scholar] [CrossRef]
- Xiao, G.D.; Zeng, X.Q. Portable Surface Plasmon Resonance Biosensor. U.S. Patent US7943092, 17 May 2011. [Google Scholar]
- Bengt, I.; Stefan, S. Surface Plasmon Resonance Biosensor System. U.S. Patent US10768108, 8 September 2020. [Google Scholar]
- Jiang, X.D.; Guo, R.K.; Dong, X.; Wang, J.M.; Li, W. Memristor-Reconstructed Near-Infrared SPR Biosensor with Adjustable Penetration Depth and Preparation Method Thereof. U.S. Patent US10935491, 2 March 2021. [Google Scholar]
- Heimlich, G.; Bortner, C.D.; Cidlowski, J.A. Apoptosis and cell volume regulation: The importance of ions and ion channels. Adv. Exp. Med. Biol. 2004, 559, 189–203. [Google Scholar]
- Tan, C.Y.; Huang, Y.X. Dependence of refractive index on concentration and temperature in electrolyte solution, polar solution, nonpolar solution, and protein solution. J. Chem. Eng. Data 2015, 60, 2827–2833. [Google Scholar] [CrossRef]
- Singh, R.R.; Kumari, S.; Gautam, A.; Priye, V. Glucose sensing using slot waveguide-based SOI ring resonator. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–8. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, S.; Liu, P.; Chen, Z.; Liu, J.; Shen, L.; Zhang, X.; Cui, J.; Li, T.; Cui, Y.; Ren, Y. High-Property Refractive Index and Bio-Sensing Dual-Purpose Sensor Based on SPPs. Micromachines 2022, 13, 846. https://doi.org/10.3390/mi13060846
Yan S, Liu P, Chen Z, Liu J, Shen L, Zhang X, Cui J, Li T, Cui Y, Ren Y. High-Property Refractive Index and Bio-Sensing Dual-Purpose Sensor Based on SPPs. Micromachines. 2022; 13(6):846. https://doi.org/10.3390/mi13060846
Chicago/Turabian StyleYan, Shubin, Pengwei Liu, Zhanbo Chen, Jilai Liu, Lifang Shen, Xiaoyu Zhang, Jiaming Cui, Tingsong Li, Yang Cui, and Yifeng Ren. 2022. "High-Property Refractive Index and Bio-Sensing Dual-Purpose Sensor Based on SPPs" Micromachines 13, no. 6: 846. https://doi.org/10.3390/mi13060846
APA StyleYan, S., Liu, P., Chen, Z., Liu, J., Shen, L., Zhang, X., Cui, J., Li, T., Cui, Y., & Ren, Y. (2022). High-Property Refractive Index and Bio-Sensing Dual-Purpose Sensor Based on SPPs. Micromachines, 13(6), 846. https://doi.org/10.3390/mi13060846