Effect of the Deposition Time on the Structural, 3D Vertical Growth, and Electrical Conductivity Properties of Electrodeposited Anatase–Rutile Nanostructured Thin Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Thin Films Electrophoretic Deposition
2.3. Film Characteristics Techniques
2.3.1. X-ray Diffraction Techniques
2.3.2. AFM Measurements
2.3.3. Surface Analysis
2.3.4. Electrochemical Measurements
3. Results and Discussion
3.1. Morphology Analysis
3.2. Advanced Stereometry Evaluation
3.3. Power Spectrum Density of the TiO2 Thin Films Nanotexture
3.4. Minkowski Functionals
3.5. Electrochemical Impedance Spectroscopy of the TiO2 Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haider, A.J.; Jameel, Z.N.; Al-Hussaini, I.H.M. Review on: Titanium Dioxide Applications. Energy Procedia 2019, 157, 17–29. [Google Scholar] [CrossRef]
- Hoseinzadeh, T.; Solaymani, S.; Kulesza, S.; Achour, A.; Ghorannevis, Z.; Ţălu, Ș.; Bramowicz, M.; Ghoranneviss, M.; Rezaee, S.; Boochani, A.; et al. Microstructures, fractal geometry and dye-sensitized solar cells performance of CdS/TiO2 nanostructures. J. Electroanal. Chem. 2018, 830-831, 80–87. [Google Scholar] [CrossRef]
- Zare, M.; Solaymani, S.; Shafiekhani, A.; Kulesza, S.; Ţălu, Ș.; Bramowicz, M. Evolution of rough-surface geometry and crystalline structures of aligned TiO2 nanotubes for photoelectrochemical water splitting. Sci. Rep. 2018, 8, 10870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, Y.B.; Lee, M.S.; Jeong, E.D.; Kim, H.G.; Jung, W.Y.; Baek, S.H.; Lee, G.D.; Park, S.S.; Hong, S.S. Hydrothermal Synthesis of Titanium Dioxides from Peroxotitanate Solution Using Different Amine Group-Containing Organics and Their Photocatalytic Activity. Catal. Today 2007, 124, 88–93. [Google Scholar] [CrossRef]
- Shakoury, R.; Arman, A.; Ţălu, Ş.; Dastan, D.; Luna, C.; Rezaee, S. Stereometric analysis of TiO2 thin films deposited by electron beam ion assisted. Opt. Quantum Electron. 2020, 52, 270. [Google Scholar] [CrossRef]
- Korpi, A.R.G.; Rezaee, S.; Luna, C.; Ţălu, Ş.; Arman, A.; Ahmadpourian, A. Influence of the oxygen partial pressure on the growth and optical properties of RF-sputtered anatase TiO2 thin films. Results Phys. 2017, 7, 3349–3352. [Google Scholar] [CrossRef]
- Silva-Moraes, M.O.; Garcia-Basabe, Y.; de Souza, R.F.B.; Mota, A.J.; Passos, R.R.; Galante, D.; Fonseca Filho, H.D.; Romaguera-Barcelay, Y.; Rocco, M.L.M.; Brito, W.R. Geometry-Dependent DNA-TiO2 Immobilization Mechanism: A Spectroscopic Approach. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 199, 349–355. [Google Scholar] [CrossRef]
- Ţălu, Ș.; Achour, A.; Solaymani, S.; Nikpasand, K.; Dalouji, V.; Sari, A.; Rezaee, S.; Nezafat, N.B. Micromorphology analysis of TiO2 thin films by atomic force microscopy images: The influence of postannealing. Microsc. Res. Tech. 2020, 83, 457–463. [Google Scholar] [CrossRef]
- Franco, L.A.; Sinatora, A. 3D Surface Parameters (ISO 25178-2): Actual Meaning of Spk and Its Relationship to Vmp. Precis. Eng. 2015, 40, 106–111. [Google Scholar] [CrossRef]
- Horcas, I.; Fernández, R.; Gómez-Rodríguez, J.M.; Colchero, J.; Gómez-Herrero, J.; Baro, A.M. WSXM: A Software for Scanning Probe Microscopy and a Tool for Nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705. [Google Scholar] [CrossRef]
- Blateyron, F. Characterisation of Areal Surface Texture; Leach, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 9783642364, ISBN 978-3-642-36457-0. [Google Scholar]
- Matos, R.S.; Pinto, E.P.; Ramos, G.Q.; de Albuquerque, M.D.F.; da Fonseca Filho, H.D. Stereometric Characterization of Kefir Microbial Films Associated with Maytenus Rigida Extract. Microsc. Res. Tech. 2020, 83, 1401–1410. [Google Scholar] [CrossRef] [PubMed]
- Barcelay, Y.R.; Moreira, J.A.G.; de Jesus Monteiro Almeida, A.; Brito, W.R.; Matos, R.S.; da Fonseca Filho, H.D. Nanoscale Stereometric Evaluation of BiZn0.5Ti0.5O3 Thin Films Grown by RF Magnetron Sputtering. Mater. Lett. 2020, 279, 128477. [Google Scholar] [CrossRef]
- Ţălu, Ş. Micro and nanoscale characterization of three dimensional surfaces. Basics and Applications; Napoca Star Publishing House: Cluj-Napoca, Romania, 2015; pp. 199–210. [Google Scholar]
- Jacobs, T.D.B.; Junge, T.; Pastewka, L. Quantitative Characterization of Surface Topography Using Spectral Analysis. Surf. Topogr. Metrol. Prop. 2017, 5, 013001. [Google Scholar] [CrossRef]
- Mountains®8 Digital Surf Mountains®8 Digital Surf Headquarters, Besançon, France. 2020. Available online: https://www.digitalsurf.com/ (accessed on 24 July 2022).
- Sevink, G.J.A. Mathematical Description of Nanostructures with Minkowski Functionals. In Nanostructured Soft Matter; Springer: Dordrecht, The Netherlands, 2007; pp. 269–299. [Google Scholar]
- Mecke, K.R.; Stoyan, D. (Eds.) Statistical Physics and Spatial Statistics. In Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2000; Volume 554, ISBN 978-3-540-67750-5. [Google Scholar]
- Pal, S.; Laera, A.M.; Licciulli, A.; Catalano, M.; Taurino, A. Biphase TiO2 Microspheres with Enhanced Photocatalytic Activity. Ind. Eng. Chem. Res. 2014, 53, 7931–7938. [Google Scholar] [CrossRef]
- Du, Y.; Niu, X.; Li, W.; An, J.; Liu, Y.; Chen, Y.; Wang, P.; Yang, X.; Feng, Q. Microwave-Assisted Synthesis of High-Energy Faceted TiO2 Nanocrystals Derived from Exfoliated Porous Metatitanic Acid Nanosheets with Improved Photocatalytic and Photovoltaic Performance. Materials 2019, 12, 3614. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Banfield, J.F. Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates: Insights from TiO2. J. Phys. Chem. B 2000, 104, 3481–3487. [Google Scholar] [CrossRef]
- Schossberger, F. Ueber Die Umwandlung Des Titandioxyds. Z. Krist. 1942, 104, 358–374. [Google Scholar]
- Horn, M.; Schwerdtfeger, C.F.; Meagher, E.P. Refinement of the Structure of Anatase at Several Temperatures. Z. Krist. New Cryst. Struct. 1972, 136, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Baur, W.H.; Khan, A.A. Rutile-Type Compounds. IV. SiO2, GeO2 and a Comparison with Other Rutile-Type Structures. Acta Crystallogr. Sect. B 1971, 27, 2133–2139. [Google Scholar] [CrossRef]
- Abbott, E.J.; Firestone, F.A. Specifying Surface Quality. Mech. Eng. 1933, 55, 569–572. [Google Scholar]
- Whitehouse, D.J. Handbook of Surface and Nanometrology, 2nd ed.; CRC Press: New York, NY, USA, 2002; ISBN 9781420034196. [Google Scholar]
- Solaymani, S.; Yadav, R.P.; Ţălu, Ș.; Achour, A.; Rezaee, S.; Nezafat, N.B. Averaged power spectrum density, fractal and multifractal spectra of Au nanoparticles deposited onto annealed TiO2 thin films. Opt. Quantum Electron. 2020, 52, 491. [Google Scholar] [CrossRef]
- Arman, A.; Ţălu, Ş.; Luna, C.; Ahmadpourian, A.; Naseri, M.; Molamohammadi, M. Micromorphology Characterization of Copper Thin Films by AFM and Fractal Analysis. J. Mater. Sci. Mater. Electron. 2015, 26, 9630–9639. [Google Scholar] [CrossRef]
- Korpi, A.R.G.; Ţălu, Ş.; Bramowicz, M.; Arman, A.; Kulesza, S.; Pszczolkowski, B.; Jurečka, S.; Mardani, M.; Luna, C.; Balashabadi, P.; et al. Minkowski functional characterization and fractal analysis of surfaces of titanium nitride films. Mater. Res. Express 2019, 6, 086463. [Google Scholar] [CrossRef]
- Grossi, M.; Riccò, B. Electrical Impedance Spectroscopy (EIS) for Biological Analysis and Food Characterization: A Review. J. Sensors Sens. Syst. 2017, 6, 303–325. [Google Scholar] [CrossRef] [Green Version]
Par [μm] | Electrodeposition Time | ||||
---|---|---|---|---|---|
2 s | 4 s | 6 s | 8 s | 10 s | |
Sq | 0.122 ± 0.019 | 0.108 ± 0.023 | 0.068 ± 0.010 | 0.068 ± 0.006 | 0.091 ± 0.008 |
Sp | 0.411 ± 0.049 | 0.358 ± 0.085 | 0.233 ± 0.058 | 0.267 ± 0.023 | 0.336 ± 0.076 |
Sv | 0.403 ± 0.046 | 0.471 ± 0.148 | 0.234 ± 0.020 | 0.239 ± 0.014 | 0.353 ± 0.067 |
Sz | 0.814 ± 0.088 | 0.829 ± 0.233 | 0.467 ± 0.070 | 0.506 ± 0.031 | 0.688 ± 0.137 |
Par | Unit | Electrodeposition Time | ||||
---|---|---|---|---|---|---|
2 s | 4 s | 6 s | 8 s | 10 s | ||
Spatial | ||||||
Sal * | [μm] | 0.432 ± 0.044 | 0.353 ± 0.037 | 0.383 ± 0.021 | 0.375 ± 0.050 | 0.338 ± 0.049 |
Str * | [-] | 0.472 ± 0.011 | 0.427 ± 0.136 | 0.394 ± 0.191 | 0.603 ± 0.069 | 0.613 ± 0.126 |
Std * | [°] | 123.94 ± 67.30 | 51.75 ± 72.72 | 52.00 ± 69.28 | 99.87 ± 77.46 | 118.44 ± 63.85 |
Hybrid | ||||||
Sdq | [-] | 961.95 ± 54.25 | 978.06 ± 114.74 | 495.91 ± 31.63 | 672.96 ± 141.40 | 878.85 ± 80.38 |
Sdr | [%] | 75.33 ± 3.09 | 75.75 ± 6.29 | 42.00 ± 2.37 | 55.17 ± 11.35 | 70.08 ± 5.40 |
Par | Unit | Electrodeposition Time | ||||
---|---|---|---|---|---|---|
2 s | 4 s | 6 s | 8 s | 10 s | ||
Spd * | [1/μm2] | 2.290 ± 0.479 | 2.620 ± 0.778 | 1.990 ± 0.401 | 3.700 ± 1.261 | 2.940 ± 0.254 |
Spc | [1/μm] | 32561 ± 7825 | 30270 ± 9318 | 18006 ± 1691 | 36391 ± 11325 | 18643 ± 1490 |
S10z | [μm] | 0.700 ± 0.088 | 0.705 ± 0.175 | 0.381 ± 0.050 | 0.413 ± 0.050 | 0.579 ± 0.094 |
S5p | [μm] | 0.350 ± 0.041 | 0.319 ± 0.068 | 0.190 ± 0.030 | 0.225 ± 0.030 | 0.265 ± 0.045 |
S5v | [μm] | 0.350 ± 0.050 | 0.386 ± 0.107 | 0.191 ± 0.021 | 0.188 ± 0.023 | 0.315 ± 0.054 |
Sda * | [μm2] | 0.727 ± 0.225 | 0.508 ± 0.095 | 0.769 ± 0.114 | 0.721 ± 0.313 | 0.516 ± 0.033 |
Sha | [μm2] | 0.471 ± 0.083 | 0.410 ± 0.093 | 0.575 ± 0.141 | 0.317 ± 0.112 | 0.365 ± 0.027 |
Sdv * | [μm3] | 2.532 ± 0.535 | 2.709 ± 0.302 | 2.077 ± 0.684 | 3.293 ± 1.816 | 2.387 ± 1.065 |
Shv * | [μm3] | 4.404 ± 1.249 | 4.063 ± 1.827 | 4.482 ± 2.068 | 1.565 ± 0.758 | 4.044 ± 1.313 |
Par | Unit | Electrodeposition Time | ||||
---|---|---|---|---|---|---|
2 s | 4 s | 6 s | 8 s | 10 s | ||
Functional | ||||||
Smr * | [%] | 0.002 ± 0.001 | 0.002 ± 0.001 | 0.002 ± 0.001 | 0.003 ± 0.002 | 0.003 ± 0 |
Smc | [μm] | 0.155 ± 0.027 | 0.134 ± 0.027 | 0.087 ± 0.013 | 0.086 ± 0.006 | 0.111 ± 0.002 |
Sxp | [μm] | 0.239 ± 0.032 | 0.237 ± 0.063 | 0.133 ± 0.019 | 0.132 ± 0.016 | 0.189 ± 0.016 |
Sk | [μm] | 0.289 ± 0.054 | 0.231 ± 0.027 | 0.175 ± 0.024 | 0.166 ± 0.012 | 0.213 ± 0.011 |
Spk | [μm] | 0.131 ± 0.019 | 0.121 ± 0.036 | 0.063 ± 0.013 | 0.076 ± 0.008 | 0.096 ± 0.038 |
Svk | [μm] | 0.127 ± 0.018 | 0.147 ± 0.052 | 0.063 ± 0.008 | 0.070 ± 0.008 | 0.107 ± 0.016 |
Smr1 * | [%] | 11.837 ± 2.197 | 12.263 ± 1.255 | 9.786 ± 1.317 | 10.899 ± 0.298 | 9.952 ± 0.361 |
Smr2 * | [%] | 89.087 ± 2.088 | 87.854 ± 1.082 | 89.750 ± 0.913 | 89.708 ± 0.864 | 87.83 ± 0.929 |
Volume | ||||||
Vmp | [µm3/µm2] | 6.265 ± 0.823 | 5.618 ± 1.510 | 3.205 ± 0.616 | 3.761 ± 0.462 | 4.798 ± 1.898 |
Vmc | [µm3/µm2] | 105.80 ± 19.58 | 87.56 ± 13.97 | 62.73 ± 10.60 | 59.32 ± 5.25 | 78.29 ± 4.29 |
Vvc | [µm3/µm2] | 147.50 ± 25.924 | 125.22 ± 24.05 | 82.89 ± 12.28 | 81.86 ± 5.82 | 102.37 ± 6.58 |
Vvv | [µm3/µm2] | 14.241 ± 2.300 | 14.84 ± 4.327 | 7.504 ± 0.972 | 7.847 ± 0.837 | 11.49 ± 1.027 |
Par | Electrodeposition Time | ||||
---|---|---|---|---|---|
2 s | 4 s | 6 s | 8 s | 10 s | |
H * | 0.53 ± 0.04 | 0.51 ± 0.08 | 0.48 ± 0.07 | 0.41 ± 0.16 | 0.59 ± 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
do Amaral Amâncio, M.; Romaguera-Barcelay, Y.; Matos, R.S.; Pires, M.A.; Gandarilla, A.M.D.; do Nascimento, M.V.B.; Nobre, F.X.; Ţălu, Ş.; da Fonseca Filho, H.D.; Brito, W.R. Effect of the Deposition Time on the Structural, 3D Vertical Growth, and Electrical Conductivity Properties of Electrodeposited Anatase–Rutile Nanostructured Thin Films. Micromachines 2022, 13, 1361. https://doi.org/10.3390/mi13081361
do Amaral Amâncio M, Romaguera-Barcelay Y, Matos RS, Pires MA, Gandarilla AMD, do Nascimento MVB, Nobre FX, Ţălu Ş, da Fonseca Filho HD, Brito WR. Effect of the Deposition Time on the Structural, 3D Vertical Growth, and Electrical Conductivity Properties of Electrodeposited Anatase–Rutile Nanostructured Thin Films. Micromachines. 2022; 13(8):1361. https://doi.org/10.3390/mi13081361
Chicago/Turabian Styledo Amaral Amâncio, Moisés, Yonny Romaguera-Barcelay, Robert Saraiva Matos, Marcelo Amanajás Pires, Ariamna María Dip Gandarilla, Marcus Valério Botelho do Nascimento, Francisco Xavier Nobre, Ştefan Ţălu, Henrique Duarte da Fonseca Filho, and Walter Ricardo Brito. 2022. "Effect of the Deposition Time on the Structural, 3D Vertical Growth, and Electrical Conductivity Properties of Electrodeposited Anatase–Rutile Nanostructured Thin Films" Micromachines 13, no. 8: 1361. https://doi.org/10.3390/mi13081361
APA Styledo Amaral Amâncio, M., Romaguera-Barcelay, Y., Matos, R. S., Pires, M. A., Gandarilla, A. M. D., do Nascimento, M. V. B., Nobre, F. X., Ţălu, Ş., da Fonseca Filho, H. D., & Brito, W. R. (2022). Effect of the Deposition Time on the Structural, 3D Vertical Growth, and Electrical Conductivity Properties of Electrodeposited Anatase–Rutile Nanostructured Thin Films. Micromachines, 13(8), 1361. https://doi.org/10.3390/mi13081361