Design of a Miniaturized Wide-Angle Fisheye Lens Based on Deep Learning and Optimization Techniques
Abstract
:1. Introduction
2. Design Method
2.1. Wide-Angle Fisheye Lens Design
2.2. Deep Learning Algorithm
3. Results and Discussion
3.1. Aspheric Lens Using the OKP4HT Material
3.2. Aspheric Lens Using Polymethyl Methacrylate Material
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wood, R.W. Physical Optics; Macmillan: New York, MY, USA, 1911; Chapter 4. [Google Scholar]
- Bond, W.N. A Wide angle lens for cloud recording. Philos. Mag. 1922, 44, 999–1001. [Google Scholar] [CrossRef]
- Hill, R. A lens for whole sky photographs. Q. J. R. Meteorol. Soc. 1924, 50, 227–235. [Google Scholar] [CrossRef]
- Beck, C. Apparatus to photograph the whole sky. J. Sci. Instrum. 1925, 2, 135–139. [Google Scholar] [CrossRef]
- Shimizu, Y. Wide-Angle Fish Lens, Kanagawa-Ken. U.S. Patent 3,737,214, 5 June 1973. [Google Scholar]
- Li, W.; Li, Y.F. Single-camera panoramic stereo imaging system with a fisheye lens and a convex mirror. Opt. Express 2011, 19, 5855–5867. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.S.; Tien, C.L.; Chen, Y.H.; Chu, P.Y. Ultra-wide angle lens design with relative illumination analysis. J. Eur. Opt. Soc.-Rapid Publ. 2016, 11, 16001-1. [Google Scholar] [CrossRef]
- Li, B.; Piyawattanametha, W.; Qiu, Z. Metalens-based miniaturized optical systems. Micromachines 2019, 10, 310. [Google Scholar] [CrossRef] [PubMed]
- Colburn, S.; Zhan, A. Design of a simple fisheye lens. Appl. Opt. 2019, 58, 5311–5319. [Google Scholar]
- Engelberg, J.; Zhou, C.; Mazurski, N.; Bar-David, J.; Kristensen, A.; Levy, U. Near-IR wide-field-of-view Huygens metalens for outdoor imaging applications. Nanophotonics 2020, 9, 361–370. [Google Scholar] [CrossRef]
- Colburn, S.; Zhan, A.; Majumda, A. Varifocal zoom imaging with large area focal length adjustable metalenses. Optica 2018, 5, 825–831. [Google Scholar] [CrossRef]
- Zhang, F.; Pu, M.; Li, X.; Ma, X.; Guo, Y.; Gao, P.; Yu, H.; Gu, M.; Luo, X. Extreme-angle silicon infrared optics enabled by streamlined surfaces. Adv. Mater. 2021, 33, 2008157. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.B.; Zhang, F.; Pu, M.B.; Guo, Y.H.; Li, X.; Ma, X.L. Recent advances of wide-angle metalenses: Principle, design, and applications. Nanophotonics 2022, 11, 1–20. [Google Scholar] [CrossRef]
- Ning, A. Compact Fisheye Objective Lens. U.S. Patent 2009/0080093 A1, 26 March 2009. [Google Scholar]
- OpticStudio. Zemax Optical Design Program User’s Guide; Zemax, LLC: Kirkland, WA, USA, 2011. [Google Scholar]
- Kingslake, R. Optical System Design; Academic Press: New York, NY, USA, 1983; Chapter 15. [Google Scholar]
- What Is “Lens Geometric Distortion”. Available online: https://www.image-engineering.de/library/technotes/752-what-is-lens-geometric-distortion (accessed on 25 July 2011).
- Shannon, R.R. The Art and Science of Optical Design; Cambridge University Press: Cambridge, UK, 1997; Chapter 5. [Google Scholar]
- Lin, C.L. Wide Angle Lens Module and Vehicle Vision System. U.S. Patent 7,944,626, 11 November 2011. [Google Scholar]
- Ning, A. Compact Fisheye Objective Lens. U.S. Patent 7,023,628 B1, 4 April 2006. [Google Scholar]
- Kawada, M. Fisheye Lens Unit. U.S. Patent 7,283,312, 16 October 2007. [Google Scholar]
- Yabe, A. Optimal selection of aspheric surfaces in optical design. Opt. Express 2005, 13, 7233–7242. [Google Scholar] [CrossRef] [PubMed]
- Ishiyama, T.; Suenaga, Y.; Shimizu, Y.; Kenzaburo Suzuki, K. Lens Design of Wide-Angle Lenses with an Aspherical Surface; Technical Digest Series; Optica Publishing Group: Washington, DC, USA, 1994; Paper ONDE.394. [Google Scholar]
- Duan, B.; Wu, B.; Jin-hui Chen, J.H.; Chen, H.; Da-Quan Yang, D.Q. Deep learning for photonic design and analysis: Principles and applications. Front. Mater. 2022, 8, 791296. [Google Scholar] [CrossRef]
- Wang, Q.; Makarenko, M.; Lopez, A.B.; Getman, F.; Fratalocchi, A. Advancing statistical learning and artificial intelligence in nanophotonics inverse design. Nanophotonics 2022, 11, 2483–2505. [Google Scholar] [CrossRef]
- Mao, S.; Ren, Z.; Zhao, J. An off-axis flight vision display system design using machine learning. IEEE Photonics J. 2022, 14, 8618806. [Google Scholar] [CrossRef]
- Cassar, D.R.; Santos, G.G.; Zanotto, E.D. Designing optical glasses by machine learning coupled with a genetic algorithm. Ceram. Int. 2021, 47, 10555–10564. [Google Scholar] [CrossRef]
- Côté, G.; Lalonde, J.F.; Thibault, S. On the use of deep learning for lens design. In Proceedings of the SPIE 12078, International Optical Design Conference, Washington, DC, USA, 19 November 2021. 120781A. [Google Scholar]
- Hegde, R.S. Accelerating optics design optimizations with deep learning. Opt. Eng. 2019, 58, 065103. [Google Scholar] [CrossRef]
- Smith, W.J. Modern Lens Design, 2nd ed.; McGraw-Hill: New York, NY, USA, 2005; pp. 68–69. [Google Scholar]
- Optical Material: Plastics. Available online: https://www.emf-corp.com/optical-materials/optical-material-plastics/ (accessed on 24 August 2022).
- Moore, K.E. Optimization for as-built performance. In Proceedings of the SPIE 10925, Photonic Instrumentation Engineering VI, San Francisco, CA, USA, 5–7 February 2019. [Google Scholar]
Items | Design Requirements |
---|---|
F/# | 3.0 |
FOV(°) | >170° |
EFL (mm) | >0.6 mm |
MTF (%) at 100 lp/mm | >30% |
Field curvature (mm) | <0.5 mm |
Spot size (μm) | <5 μm |
Total length (mm) | <20 mm |
F-θ distortion (%) | <5% |
Lateral Color (μm) | <2 μm |
Surface No./Type | Radius (mm) | Thickness (mm) | Material | Diameter (mm) | |
---|---|---|---|---|---|
1 | STANDARD | 0.115 | 1.232 | LASF18A | 10.886 |
2 | STANDARD | 0.392 | 2.269 | 5.062 | |
3 | ASPHERICAL | 0.067 | 0.544 | OKP4HT | 4.918 |
4 | ASPHERICAL | 0.587 | 2.475 | 3.660 | |
5 | STANDARD | 0.174 | 0.889 | SF6 | 4.078 |
6 | STANDARD | −10.127 | 2.855 | 4.026 | |
7 | APERTURE STOP | Infinity | 0.576 | 1.084 | |
8 | STANDARD | 0.323 | 1.109 | N-AK34 | 1.842 |
9 | STANDARD | −10.684 | 0.368 | SF66 | 1.982 |
10 | STANDARD | −10.217 | 1.500 | 2.220 |
Surface No./Type | Radius (mm) | Thickness (mm) | Material | Diameter (mm) | |
---|---|---|---|---|---|
1 | STANDARD | 0.106 | 0.956 | LASF18A | 9.914 |
2 | STANDARD | 0.352 | 2.099 | 5.368 | |
3 | ASPHERICAL | 0.006 | 0.387 | PMMA | 5.176 |
4 | ASPHERICAL | 0.628 | 2.350 | 3.682 | |
5 | STANDARD | 0.172 | 2.291 | SF6 | 3.568 |
6 | STANDARD | −0.096 | 1.919 | 2.952 | |
7 | APERTURE STOP | Infinity | 0.483 | 1.112 | |
8 | STANDARD | 0.214 | 0.928 | N-LAK34 | 1.682 |
9 | STANDARD | −0.754 | 0.477 | SF66 | 1.854 |
10 | STANDARD | −0.330 | 1.500 | 2.716 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tien, C.-L.; Chiang, C.-Y.; Sun, W.-S. Design of a Miniaturized Wide-Angle Fisheye Lens Based on Deep Learning and Optimization Techniques. Micromachines 2022, 13, 1409. https://doi.org/10.3390/mi13091409
Tien C-L, Chiang C-Y, Sun W-S. Design of a Miniaturized Wide-Angle Fisheye Lens Based on Deep Learning and Optimization Techniques. Micromachines. 2022; 13(9):1409. https://doi.org/10.3390/mi13091409
Chicago/Turabian StyleTien, Chuen-Lin, Chun-Yu Chiang, and Wen-Shing Sun. 2022. "Design of a Miniaturized Wide-Angle Fisheye Lens Based on Deep Learning and Optimization Techniques" Micromachines 13, no. 9: 1409. https://doi.org/10.3390/mi13091409
APA StyleTien, C.-L., Chiang, C.-Y., & Sun, W.-S. (2022). Design of a Miniaturized Wide-Angle Fisheye Lens Based on Deep Learning and Optimization Techniques. Micromachines, 13(9), 1409. https://doi.org/10.3390/mi13091409