Memristive Switching and Density-Functional Theory Calculations in Double Nitride Insulating Layers
Abstract
:1. Introduction
2. Experiments
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, J.J.; Strukov, D.B.; Stewart, D.R. Memristive devices for computing. Nat. Nanotechnol. 2013, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, W.; Xu, X.; Lv, H.; Liu, Q.; Long, S.; Liu, M. Complementary switching in 3D resistive memory array. Adv. Electron. Mater. 2017, 3, 1700287. [Google Scholar] [CrossRef]
- Gaba, S.; Cai, F.; Zhou, J.; Lu, W.D. Ultralow sub-1-nA operating current resistive memory with intrinsic non-linear characteristics. IEEE Electron. Device Lett. 2014, 35, 1239–1241. [Google Scholar] [CrossRef]
- Fang, Y.; Yu, Z.; Wang, Z.; Zhang, T.; Yang, Y.; Cai, Y.; Huang, R. Improvement of HfOX-Based RRAM Device Variation by Inserting ALD TiN Buffer Layer. IEEE Electron. Device Lett. 2018, 39, 819–822. [Google Scholar] [CrossRef]
- Pan, T.M.; Lu, C.H. Forming-free resistive switching behavior in Nd2O3, Dy2O3, and Er2O3 films fabricated in full room temperature. Appl. Phys. Lett. 2011, 99, 113509. [Google Scholar] [CrossRef]
- Yu, M.; Cai, Y.; Wang, Z.; Fang, Y.; Liu, Y.; Yu, Z.; Pan, Y.; Zhang, Z.; Tan, J.; Yang, X.; et al. Novel vertical 3D structure of TaOX-based RRAM with self-localized switching region by sidewall electrode oxidation. Sci. Rep. 2016, 6, 21020. [Google Scholar] [CrossRef]
- Yu, S.; Chen, H.-Y.; Gao, B.; Kang, J.; Wong, H.-S.P. HfOX-Based Vertical Resistive Switching Random Access Memory Suitable for Bit-Cost-Effective Three-Dimensional Cross-Point Architecture. ACS Nano 2013, 7, 2320–2325. [Google Scholar] [CrossRef]
- Raty, J.Y.; Noé, P. Ovonic Threshold Switching in Se-Rich GexSe1−x Glasses from an Atomistic Point of View: The Crucial Role of the Metavalent Bonding Mechanism. Phys. Status Solidi RRL 2020, 14, 1900581. [Google Scholar] [CrossRef]
- Tikhov, S.V.; Mikhaylov, A.N.; Belov, A.I.; Korolev, D.S.; Antonov, I.N.; Karzanov, V.V.; Gorshkov, O.N.; Tetelbaum, D.I.; Karakolis, P.; Dimitrakis, P. Role of highly doped Si substrate in bipolar resistive switching of silicon nitride MIS-capacitors. Microelectron. Eng. 2018, 187, 134–138. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.; Hwang, S.; Kim, M.-H.; Chang, Y.-F.; Park, B.-G. Analog Synaptic Behavior of a Silicon Nitride Memristor. ACS Appl. Mater. Interfaces 2017, 9, 40420–40427. [Google Scholar] [CrossRef]
- Kim, S.; Jung, S.; Kim, M.H.; Cho, S.; Park, B.G. Resistive switching characteristics of Si3N4 -based resistive-switching random-access memory cell with tunnel barrier for high density integration and low-power applications. Appl. Phys. Lett. 2015, 106, 212106. [Google Scholar] [CrossRef]
- Kim, S.; Jung, S.; Kim, M.-H.; Chen, Y.-C.; Chang, T.-C.; Ryoo, K.-C.; Cho, S.; Lee, J.-H.; Park, B.-G. Scaling Effect on Silicon Nitride Memristor with Highly Doped Si Substrate. Small 2018, 14, 1704062. [Google Scholar] [CrossRef]
- Kim, H.D.; Yun, M.J.; Kim, S. Resistive switching characteristics of Al/Si3N4/p-Si MIS-based resistive switching memory devices. J. Korean Phys. Soc. 2016, 69, 435–438. [Google Scholar] [CrossRef]
- Kim, H.D.; Yun, M.; Kim, S. Self-rectifying resistive switching behavior observed in Si3N4 -based resistive random access memory devices. J. Alloy. Compd. 2015, 651, 340–343. [Google Scholar] [CrossRef]
- Jiang, X.; Ma, Z.; Xu, J.; Chen, K.; Xu, L.; Li, W.; Huang, X.; Feng, D. a-SiNX: H-based ultra-low power resistive random access memory with tunable Si dangling bond conduction paths. Sci. Rep. 2015, 5, 15762. [Google Scholar] [CrossRef]
- Hong, S.M.; Kim, H.D.; An, H.M.; Kim, T.G. Effect of Work Function Difference Between Top and Bottom Electrodes on the Resistive Switching Properties of SiN Films. IEEE Electron. Device Lett. 2013, 34, 1181–1183. [Google Scholar] [CrossRef]
- Zedlitz, R.; Heintze, M.; Schubert, M.B. Properties of amorphous boron nitride thin films. J. Non-Cryst. Solids 1996, 198, 403–406. [Google Scholar] [CrossRef]
- Rand, M.J.; Roberts, J. Preparation and Properties of Thin Film Boron Nitride. J. Electrochem. Soc. 1968, 115, 423–429. [Google Scholar] [CrossRef]
- Kim, D.; Shin, J.; Kim, S. Resistive Switching Characteristics of ZnO-Based RRAM on Silicon Substrate. Metals 2021, 11, 1572. [Google Scholar] [CrossRef]
- Ryu, H.; Kim, S. Effects of Oxygen Precursor on Resistive Switching Properties of CMOS Compatible HfO2-Based RRAM. Metals 2021, 11, 1350. [Google Scholar] [CrossRef]
- Cho, H.; Kim, S. Short-Term Memory Dynamics of TiN/Ti/TiO2/SiOx/Si Resistive Random Access Memory. Nanomaterials 2020, 10, 1821. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B Condens. Matter Mater. Phys. 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B Condens. Matter Mater. Phys. 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Krukau, A.V.; Vydrov, O.A.; Izmaylov, A.F.; Scuseria, G.E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for brillouin-zone integrations. Phys. Rev. B Condens. Matter 1976, 13, 5188. [Google Scholar] [CrossRef]
- Pack, J.D.; Monkhorst, H.J. “Special points for Brillouin-zone integrations”-A reply. Phys. Rev. B Condens. Matter 1977, 16, 1748–1749. [Google Scholar] [CrossRef]
- Choi, J.; Kim, S. Coexistence of Long-Term Memory and Short-Term Memory in an SiNX-Based Memristor. Phys. Status Solidi RRL 2020, 14, 2000357. [Google Scholar] [CrossRef]
- Lee, J.; Ryu, J.-H.; Kim, B.; Hussain, F.; Mahata, C.; Sim, E.; Ismail, M.; Abbas, Y.; Abbas, H.; Lee, D.K.; et al. Synaptic Characteristics of Amorphous Boron Nitride-Based Memristors on a Highly Doped Silicon Substrate for Neuromorphic Engineering. ACS Appl. Mater. Interfaces 2020, 12, 33908–33916. [Google Scholar] [CrossRef]
- Linn, E.; Rosezin, R.; Kügeler, C.; Waser, R. Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 2010, 9, 403–406. [Google Scholar] [CrossRef]
- Aluguri, R.; Kumar, D.; Simanjuntak, F.M.; Tseng, T.Y. One bipolar transistor selector—One resistive random access memory device for cross bar memory array. AIP Adv. 2017, 4, 095118. [Google Scholar] [CrossRef]
- Cowley, A.M.; Sze, S.M. Surface states and barrier height of metal-semiconductor systems. J. Appl. Phys. 1965, 36, 3212–3220. [Google Scholar] [CrossRef]
- Cheung, S.K.; Cheung, N.W. Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 1986, 49, 85. [Google Scholar] [CrossRef]
- Durandurdu, M. Hexagonal nanosheets in amorphous BN: A first principles study. J. Non-Cryst. Solids 2015, 427, 41–45. [Google Scholar] [CrossRef]
- Zanatta, A.R.; Nunes, L.A.D.O. Green photoluminescence from Er-containing amorphous SiN thin films. Appl. Phys. Lett. 1998, 72, 3127–3129. [Google Scholar] [CrossRef]
- Mary, J.A.; Vijaya, J.J.; Dai, J.H.; Bououdina, M.; John Kennedy, L.; Song, Y. Experimental and first-principles DFT studies of electronic, optical and magnetic properties of cerium-manganese codoped zinc oxide nanostructures. Mater. Sci. Semicond. Process. 2015, 34, 27–38. [Google Scholar] [CrossRef]
- Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360. [Google Scholar] [CrossRef]
- Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 2009, 21, 084204. [Google Scholar] [CrossRef]
Ni/SiN/ BN/Si | 1 B Vac | 1 Si Vac | 1 N Vac | 2 B Vac | 2 N Vac | |
---|---|---|---|---|---|---|
Si | +2.85 | +2.91 | +2.81 | +3 | +0.85 | +1.04 |
B | +2.11 | +2.1 | +2.14 | +2.1 | +2.13 | +2.14 |
N | −0.8 | −1 | −0.86 | −2.13 | −0.71 | −2.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.A.; Hussain, F.; Chung, D.; Rahmani, M.K.; Ismail, M.; Mahata, C.; Abbas, Y.; Abbas, H.; Choi, C.; Mikhaylov, A.N.; et al. Memristive Switching and Density-Functional Theory Calculations in Double Nitride Insulating Layers. Micromachines 2022, 13, 1498. https://doi.org/10.3390/mi13091498
Khan SA, Hussain F, Chung D, Rahmani MK, Ismail M, Mahata C, Abbas Y, Abbas H, Choi C, Mikhaylov AN, et al. Memristive Switching and Density-Functional Theory Calculations in Double Nitride Insulating Layers. Micromachines. 2022; 13(9):1498. https://doi.org/10.3390/mi13091498
Chicago/Turabian StyleKhan, Sobia Ali, Fayyaz Hussain, Daewon Chung, Mehr Khalid Rahmani, Muhammd Ismail, Chandreswar Mahata, Yawar Abbas, Haider Abbas, Changhwan Choi, Alexey N. Mikhaylov, and et al. 2022. "Memristive Switching and Density-Functional Theory Calculations in Double Nitride Insulating Layers" Micromachines 13, no. 9: 1498. https://doi.org/10.3390/mi13091498
APA StyleKhan, S. A., Hussain, F., Chung, D., Rahmani, M. K., Ismail, M., Mahata, C., Abbas, Y., Abbas, H., Choi, C., Mikhaylov, A. N., Shchanikov, S. A., Yang, B. -D., & Kim, S. (2022). Memristive Switching and Density-Functional Theory Calculations in Double Nitride Insulating Layers. Micromachines, 13(9), 1498. https://doi.org/10.3390/mi13091498