ZnO/Graphene Composite from Solvent-Exfoliated Few-Layer Graphene Nanosheets for Photocatalytic Dye Degradation under Sunlight Irradiation
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Yu, J.; Wageh, S.; Al-Ghamdi, A.A.; Xie, J. Graphene in Photocatalysis: A Review. Small 2016, 12, 6640–6696. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Novoselov, K.S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Raizada, P.; Sudhaik, A.; Singh, P. Photocatalytic Water Decontamination Using Graphene and ZnO Coupled Photocatalysts: A Review. Mater. Sci. Energy Technol. 2019, 2, 509–525. [Google Scholar] [CrossRef]
- Sreeprasad, T.S.; Maliyekkal, S.M.; Lisha, K.P.; Pradeep, T. Reduced Graphene Oxide–Metal/Metal Oxide Composites: Facile Synthesis and Application in Water Purification. J. Hazard. Mater. 2011, 186, 921–931. [Google Scholar] [CrossRef] [PubMed]
- Savage, N.; Diallo, M.S. Nanomaterials and Water Purification: Opportunities and Challenges. J. Nanoparticle Res. 2005, 7, 331–342. [Google Scholar] [CrossRef]
- Narayan, R. Use of Nanomaterials in Water Purification. Mater. Today 2010, 13, 44–46. [Google Scholar] [CrossRef]
- Martha, S.; Mansingh, S.; Parida, K.M.; Thirumurugan, A. Exfoliated Metal Free Homojunction Photocatalyst Prepared by a Biomediated Route for Enhanced Hydrogen Evolution and Rhodamine B Degradation. Mater. Chem. Front. 2017, 1, 1641–1653. [Google Scholar] [CrossRef]
- Jayaraj, S.K.; Sadishkumar, V.; Arun, T.; Thangadurai, P. Enhanced Photocatalytic Activity of V2O5 Nanorods for the Photodegradation of Organic Dyes: A Detailed Understanding of the Mechanism and Their Antibacterial Activity. Mater. Sci. Semicond. Process. 2018, 85, 122–133. [Google Scholar] [CrossRef]
- Kandi, D.; Martha, S.; Thirumurugan, A.; Parida, K.M. CDS QDs-Decorated Self-Doped Γ-Bi2MoO6: A Sustainable and Versatile Photocatalyst toward Photoreduction of Cr(VI) and Degradation of Phenol. ACS Omega 2017, 2, 9040–9056. [Google Scholar] [CrossRef]
- Kandi, D.; Martha, S.; Thirumurugan, A.; Parida, K.M. Modification of BiOI Microplates with CdS QDs for Enhancing Stability, Optical Property, Electronic Behavior toward Rhodamine B Decolorization, and Photocatalytic Hydrogen Evolution. J. Phys. Chem. C 2017, 121, 4834–4849. [Google Scholar] [CrossRef]
- Ravichandran, K.; Nithiyadevi, K.; Sakthivel, B.; Arun, T.; Sindhuja, E.; Muruganandam, G. Synthesis of ZnO:Co/RGO Nanocomposites for Enhanced Photocatalytic and Antibacterial Activities. Ceram. Int. 2016, 42, 17539–17550. [Google Scholar] [CrossRef]
- Dhanabal, R.; Shafi, P.M.; Arun, T.; Velmathi, S.; Hussain, S.; Bose, A.C. Investigations of Interfacial Electric Field on Reduced-Graphene-Oxide-Supported Molybdenum Oxide @ Silver Phosphate Ternary Hybrid Composite: Highly Efficient Visible-Light-Driven Photocatalyst. ChemistrySelect 2018, 3, 9920–9932. [Google Scholar] [CrossRef]
- Upadhyay, R.K.; Soin, N.; Roy, S.S. Role of Graphene/Metal Oxide Composites as Photocatalysts, Adsorbents and Disinfectants in Water Treatment: A Review. RSC Adv. 2013, 4, 3823–3851. [Google Scholar] [CrossRef]
- Raizada, P.; Shandilya, P.; Singh, P.; Thakur, P. Solar Light-Facilitated Oxytetracycline Removal from the Aqueous Phase Utilizing a H2O2/ZnWO4/CaO Catalytic System. J. Taibah Univ. Sci. 2017, 11, 689–699. [Google Scholar] [CrossRef]
- Vora, J.; Khanna, S.; Chaudhari, R.; Patel, V.K.; Paneliya, S.; Pimenov, D.Y.; Giasin, K.; Prakash, C. Machining Parameter Optimization and Experimental Investigations of Nano-Graphene Mixed Electrical Discharge Machining of Nitinol Shape Memory Alloy. J. Mater. Res. Technol. 2022, 19, 653–668. [Google Scholar] [CrossRef]
- Boppana, S.B.; Dayanand, S.; Anil Kumar, M.R.; Kumar, V.; Aravinda, T. Synthesis and Characterization of Nano Graphene and ZrO2 Reinforced Al 6061 Metal Matrix Composites. J. Mater. Res. Technol. 2020, 9, 7354–7362. [Google Scholar] [CrossRef]
- Raizada, P.; Kumari, J.; Shandilya, P.; Singh, P. Kinetics of Photocatalytic Mineralization of Oxytetracycline and Ampicillin Using Activated Carbon Supported Zno/Znwo4 Nanocomposite in Simulated Wastewater. Desalin. Water Treat. 2017, 79, 204–213. [Google Scholar] [CrossRef]
- Ravichandran, K.; Sindhuja, E.; Uma, R.; Arun, T. Photocatalytic Efficacy of ZnO Films—Light Intensity and Thickness Effects. Surf. Eng. 2017, 33, 512–520. [Google Scholar] [CrossRef]
- Das, B.K.; Das, T.; Parashar, K.; Thirumurugan, A.; Parashar, S.K.S. Structural, Bandgap Tuning and Electrical Properties of Cu Doped ZnO Nanoparticles Synthesized by Mechanical Alloying. J. Mater. Sci. Mater. Electron. 2017, 28, 15127–15134. [Google Scholar] [CrossRef]
- Hu, C.; Lu, T.; Chen, F.; Zhang, R. A Brief Review of Graphene–Metal Oxide Composites Synthesis and Applications in Photocatalysis. J. Chin. Adv. Mater. Soc. 2013, 1, 21–39. [Google Scholar] [CrossRef]
- Cui, H.; Zhu, G.; Liu, X.; Liu, F.; Xie, Y.; Yang, C.; Lin, T.; Gu, H.; Huang, F. Niobium Nitride Nb4N5 as a New High-Performance Electrode Material for Supercapacitors. Adv. Sci. 2015, 2, 1500126. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahzadeh, M.; Jaleh, B.; Jabbari, A. Synthesis, Characterization and Catalytic Activity of Graphene Oxide/ZnO Nanocomposites. RSC Adv. 2014, 4, 36713–36720. [Google Scholar] [CrossRef]
- Chua, C.K.; Pumera, M. Chemical Reduction of Graphene Oxide: A Synthetic Chemistry Viewpoint. Chem. Soc. Rev. 2013, 43, 291–312. [Google Scholar] [CrossRef]
- Kumar, P.V.; Bardhan, N.M.; Tongay, S.; Wu, J.; Belcher, A.M.; Grossman, J.C. Scalable Enhancement of Graphene Oxide Properties by Thermally Driven Phase Transformation. Nat. Chem. 2013, 6, 151–158. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Q.; Han, J.; Zhang, X.; Wang, J.; Li, Z.; Yan, H.; Liu, L. Deft Dipping Combined with Electrochemical Reduction to Obtain 3D Electrochemical Reduction Graphene Oxide and Its Applications in Supercapacitors. J. Mater. Chem. A 2013, 2, 1137–1143. [Google Scholar] [CrossRef]
- Wang, J.; Tsuzuki, T.; Tang, B.; Hou, X.; Sun, L.; Wang, X. Reduced Graphene Oxide/ZnO Composite: Reusable Adsorbent for Pollutant Management. ACS Appl. Mater. Interfaces 2012, 4, 3084–3090. [Google Scholar] [CrossRef]
- Pei, S.; Cheng, H.M. The Reduction of Graphene Oxide. Carbon 2012, 50, 3210–3228. [Google Scholar] [CrossRef]
- Atchudan, R.; Edison, T.N.J.I.; Perumal, S.; Karthikeyan, D.; Lee, Y.R. Facile Synthesis of Zinc Oxide Nanoparticles Decorated Graphene Oxide Composite via Simple Solvothermal Route and Their Photocatalytic Activity on Methylene Blue Degradation. J. Photochem. Photobiol. B Biol. 2016, 162, 500–510. [Google Scholar] [CrossRef]
- Qin, J.; Zhang, X.; Yang, C.; Cao, M.; Ma, M.; Liu, R. ZnO Microspheres-Reduced Graphene Oxide Nanocomposite for Photocatalytic Degradation of Methylene Blue Dye. Appl. Surf. Sci. 2017, 392, 196–203. [Google Scholar] [CrossRef]
- Rouzafzay, F.; Shidpour, R.; Al-Abri, M.Z.M.; Qaderi, F.; Ahmadi, A.; Myint, M.T.Z. Graphene@ZnO Nanocompound for Short-Time Water Treatment under Sun-Simulated Irradiation: Effect of Shear Exfoliation of Graphene Using Kitchen Blender on Photocatalytic Degradation. J. Alloys Compd. 2020, 829, 154614. [Google Scholar] [CrossRef]
- Paton, K.R.; Varrla, E.; Backes, C.; Smith, R.J.; Khan, U.; O’Neill, A.; Boland, C.; Lotya, M.; Istrate, O.M.; King, P.; et al. Scalable Production of Large Quantities of Defect-Free Few-Layer Graphene by Shear Exfoliation in Liquids. Nat. Mater. 2014, 13, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Khan, U.; O’Neill, A.; Lotya, M.; De, S.; Coleman, J.N. High-Concentration Solvent Exfoliation of Graphene. Small 2010, 6, 864–871. [Google Scholar] [CrossRef] [PubMed]
- Shatnawi, M.; Alsmadi, A.M.; Bsoul, I.; Salameh, B.; Mathai, M.; Alnawashi, G.; Alzoubi, G.M.; Al-Dweri, F.; Bawa’aneh, M.S. Influence of Mn Doping on the Magnetic and Optical Properties of ZnO Nanocrystalline Particles. Results Phys. 2016, 6, 1064–1071. [Google Scholar] [CrossRef]
- El-Sayed, F.; Hussien, M.S.A.; AlAbdulaal, T.H.; Abdel-Aty, A.-H.; Zahran, H.Y.; Yahia, I.S.; Abdel-wahab, M.S.; Ibrahim, E.H.; Ibrahim, M.A.; Elhaes, H. Study of Catalytic Activity of G-SrO Nanoparticles for Degradation of Cationic and Anionic Dye and Comparative Study Photocatalytic and Electro & Photo-Electrocatalytic of Anionic Dye Degradation. J. Mater. Res. Technol. 2022, 20, 959–975. [Google Scholar] [CrossRef]
- Hammad, A.H.; Abdel-wahab, M.S. Photocatalytic Activity in Nanostructured Zinc Oxide Thin Films Doped with Metallic Copper. Phys. B Condens. Matter 2022, 646, 414352. [Google Scholar] [CrossRef]
- AbuShanab, W.S.; Moustafa, E.B.; Ghandourah, E.; Taha, M.A. Effect of Graphene Nanoparticles on the Physical and Mechanical Properties of the Al2024-Graphene Nanocomposites Fabricated by Powder Metallurgy. Results Phys. 2020, 19, 103343. [Google Scholar] [CrossRef]
- Yu, X.; Qu, B.; Zhao, Y.; Li, C.; Chen, Y.; Sun, C.; Gao, P.; Zhu, C. Growth of Hollow Transition Metal (Fe, Co, Ni) Oxide Nanoparticles on Graphene Sheets through Kirkendall Effect as Anodes for High-Performance Lithium-Ion Batteries. Chem. A Eur. J. 2016, 22, 1638–1645. [Google Scholar] [CrossRef]
- Gayathri, S.; Jayabal, P.; Kottaisamy, M.; Ramakrishnan, V. Synthesis of ZnO Decorated Graphene Nanocomposite for Enhanced Photocatalytic Properties. J. Appl. Phys. 2014, 115, 173504. [Google Scholar] [CrossRef]
- Ong, W.J.; Voon, S.Y.; Tan, L.L.; Goh, B.T.; Yong, S.T.; Chai, S.P. Enhanced Daylight-Induced Photocatalytic Activity of Solvent Exfoliated Graphene (SEG)/ZnO Hybrid Nanocomposites toward Degradation of Reactive Black 5. Ind. Eng. Chem. Res. 2014, 53, 17333–17344. [Google Scholar] [CrossRef]
- Silambarasan, M.; Saravanan, S.; Soga, T. Raman and Photoluminescence Studies of Ag and Fe-Doped ZnO Nanoparticles. Int. J. ChemTech Res. 2015, 7, 1644–1650. Available online: https://www.researchgate.net/publication/275155840_Raman_and_Photoluminescence_Studies_of_Ag_and_Fe-doped_ZnO_Nanoparticles (accessed on 21 October 2022).
- Sahu, B.K.; Das, A. Graphene Oxide Surface Chemistry Regulated Growth of SnO2 Nanoparticles for Electrochemical Application. J. Alloys Compd. 2020, 834, 154901. [Google Scholar] [CrossRef]
- Caņado, L.G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y.A.; Mizusaki, H.; Jorio, A.; Coelho, L.N.; Magalhães-Paniago, R.; Pimenta, M.A. General Equation for the Determination of the Crystallite Size La of Nanographite by Raman Spectroscopy. Appl. Phys. Lett. 2006, 88, 163106. [Google Scholar] [CrossRef]
- Pant, H.R.; Park, C.H.; Pokharel, P.; Tijing, L.D.; Lee, D.S.; Kim, C.S. ZnO Micro-Flowers Assembled on Reduced Graphene Sheets with High Photocatalytic Activity for Removal of Pollutants. Powder Technol. 2013, 235, 853–858. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Huang, B.; Ma, Y.; Liu, Y.; Qin, X.; Zhang, X.; Dai, Y. Oxygen Vacancy Induced Band-Gap Narrowing and Enhanced Visible Light Photocatalytic Activity of ZnO. ACS Appl. Mater. Interfaces 2012, 4, 4024–4030. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Wang, H.; Zhou, J.; Wu, X.; Qin, W. Atomic Layer Deposition of ZnO on Carbon Black as Nanostructured Anode Materials for High-Performance Lithium-Ion Batteries. Nanoscale 2017, 9, 1184–1192. [Google Scholar] [CrossRef] [PubMed]
- Mishra, D.K.; Mohapatra, J.; Sharma, M.K.; Chattarjee, R.; Singh, S.K.; Varma, S.; Behera, S.N.; Nayak, S.K.; Entel, P. Carbon Doped ZnO: Synthesis, Characterization and Interpretation. J. Magn. Magn. Mater. 2013, 329, 146–152. [Google Scholar] [CrossRef]
- Kumar, A.; Rout, L.; Achary, L.S.K.; Dhaka, R.S.; Dash, P. Greener Route for Synthesis of Aryl and Alkyl-14H-Dibenzo [a.j] Xanthenes Using Graphene Oxide-Copper Ferrite Nanocomposite as a Recyclable Heterogeneous Catalyst. Sci. Rep. 2017, 7, 1–18. [Google Scholar] [CrossRef]
- Fan, W.; Gao, W.; Zhang, C.; Tjiu, W.W.; Pan, J.; Liu, T. Hybridization of Graphene Sheets and Carbon-Coated Fe3O4 Nanoparticles as a Synergistic Adsorbent of Organic Dyes. J. Mater. Chem. 2012, 22, 25108–25115. [Google Scholar] [CrossRef]
- Dillip, G.R.; Banerjee, A.N.; Anitha, V.C.; Deva Prasad Raju, B.; Joo, S.W.; Min, B.K. Oxygen Vacancy-Induced Structural, Optical, and Enhanced Supercapacitive Performance of Zinc Oxide Anchored Graphitic Carbon Nanofiber Hybrid Electrodes. ACS Appl. Mater. Interfaces 2016, 8, 5025–5039. [Google Scholar] [CrossRef]
- Li, H.; Wei, Y.; Zhang, Y.; Zhang, C.; Wang, G.; Zhao, Y.; Yin, F.; Bakenov, Z. In Situ Sol-Gel Synthesis of Ultrafine ZnO Nanocrystals Anchored on Graphene as Anode Material for Lithium-Ion Batteries. Ceram. Int. 2016, 42, 12371–12377. [Google Scholar] [CrossRef]
- Shahriary, L.; Athawale, A.A. Graphene Oxide Synthesized by Using Modified Hummers Approach. Int. J. Renew. Energy Environ. Eng 2014, 2, 58–63. Available online: https://www.researchgate.net/publication/303044105_Graphene_oxide_synthesized_by_using_modified_Hummers_approach (accessed on 21 October 2022).
- Yahia, I.S.; Jilani, A.; Abdel-wahab, M.S.; Zahran, H.Y.; Ansari, M.S.; Al-Ghamdi, A.A.; Hamdy, M.S. The Photocatalytic Activity of Graphene Oxide/Ag3PO4 Nano-Composite: Loading Effect. Optik 2016, 127, 10746–10757. [Google Scholar] [CrossRef]
- Dillip, G.R.; Banerjee, A.N.; Anitha, V.C.; Joo, S.W.; Min, B.K.; Sawant, S.Y.; Cho, M.H. Anchoring Mechanism of ZnO Nanoparticles on Graphitic Carbon Nanofiber Surfaces through a Modified Co-Precipitation Method to Improve Interfacial Contact and Photocatalytic Performance. ChemPhysChem 2015, 16, 3214–3232. [Google Scholar] [CrossRef]
- Seok Lee, J.; Hwan You, K.; Beum Park, C.; Lee, J.S.; You, K.H.; Park, C.B. Highly Photoactive, Low Bandgap TiO2 Nanoparticles Wrapped by Graphene. Adv. Mater. 2012, 24, 1084–1088. [Google Scholar] [CrossRef]
- Zhou, K.; Zhu, Y.; Yang, X.; Jiang, X.; Li, C. Preparation of Graphene–TiO2 Composites with Enhanced Photocatalytic Activity. N. J. Chem. 2011, 35, 353–359. [Google Scholar] [CrossRef]
- Bandopadhyay, K.; Mitra, J. Zn Interstitials and O Vacancies Responsible for N-Type ZnO: What Do the Emission Spectra Reveal? RSC Adv. 2015, 5, 23540–23547. [Google Scholar] [CrossRef]
- Patwari, G.; Kalita, P.K.; Singha, R. Structural and Optoelectronic Properties of Glucose Capped Al and Cu Doped ZnO Nanostructures. Mater. Sci. Pol. 2016, 34, 69–78. [Google Scholar] [CrossRef]
- Vempati, S.; Mitra, J.; Dawson, P. One-Step Synthesis of ZnO Nanosheets: A Blue-White Fluorophore. Nanoscale Res. Lett. 2012, 7, 1–10. [Google Scholar] [CrossRef]
- Dutta, M.; Sarkar, S.; Ghosh, T.; Basak, D. ZnO/Graphene Quantum Dot Solid-State Solar Cell. J. Phys. Chem. C 2012, 116, 20127–20131. [Google Scholar] [CrossRef]
- Nanakkal, A.R.; Alexander, L.K. Photocatalytic Activity of Graphene/ZnO Nanocomposite Fabricated by Two-Step Electrochemical Route. J. Chem. Sci. 2017, 129, 95–102. [Google Scholar] [CrossRef]
- Al-Rawashdeh, N.A.F.; Allabadi, O.; Aljarrah, M.T. Photocatalytic Activity of Graphene Oxide/Zinc Oxide Nanocomposites with Embedded Metal Nanoparticles for the Degradation of Organic Dyes. ACS Omega 2020, 5, 28046–28055. [Google Scholar] [CrossRef]
- Leng, Y.; Wang, W.; Zhang, L.; Zabihi, F.; Zhao, Y. Fabrication and Photocatalytical Enhancement of ZnO-Graphene Hybrid Using a Continuous Solvothermal Technique. J. Supercrit. Fluids 2014, 91, 61–67. [Google Scholar] [CrossRef]
- Abd-Elrahim, A.G.; Chun, D.M. Room-Temperature Deposition of ZnO-Graphene Nanocomposite Hybrid Photocatalysts for Improved Visible-Light-Driven Degradation of Methylene Blue. Ceram. Int. 2021, 47, 12812–12825. [Google Scholar] [CrossRef]
- Ramos-Corona, A.; Rangel, R.; Alvarado-Gil, J.J.; Bartolo-Pérez, P.; Quintana, P.; Rodríguez-Gattorno, G. Photocatalytic Performance of Nitrogen Doped ZnO Structures Supported on Graphene Oxide for MB Degradation. Chemosphere 2019, 236, 124368. [Google Scholar] [CrossRef] [PubMed]
- Kalantari Bolaghi, Z.; Masoudpanah, S.M.; Hasheminiasari, M. Photocatalytic Activity of ZnO/RGO Composite Synthesized by One-Pot Solution Combustion Method. Mater. Res. Bull. 2019, 115, 191–195. [Google Scholar] [CrossRef]
- Haghshenas, S.S.P.; Nemati, A.; Simchi, R.; Kim, C.U. Photocatalytic and Photoluminescence Properties of ZnO/Graphene Quasi Core-Shell Nanoparticles. Ceram. Int. 2019, 45, 8945–8961. [Google Scholar] [CrossRef]
- Bu, Y.; Chen, Z.; Li, W.; Hou, B. Highly Efficient Photocatalytic Performance of Graphene-ZnO Quasi-Shell-Core Composite Material. ACS Appl. Mater. Interfaces 2013, 5, 12361–12368. [Google Scholar] [CrossRef] [PubMed]
- Nisar, A.; Saeed, M.; Muneer, M.; Usman, M.; Khan, I. Synthesis and Characterization of ZnO Decorated Reduced Graphene Oxide (ZnO-RGO) and Evaluation of Its Photocatalytic Activity toward Photodegradation of Methylene Blue. Environ. Sci. Pollut. Res. 2022, 29, 418–430. [Google Scholar] [CrossRef] [PubMed]
- Beura, R.; Thangadurai, P. Effect of Sn Doping in ZnO on the Photocatalytic Activity of ZnO-Graphene Nanocomposite with Improved Activity. J. Environ. Chem. Eng. 2018, 6, 5087–5100. [Google Scholar] [CrossRef]
- Xue, B.; Zou, Y. High Photocatalytic Activity of ZnO–Graphene Composite. J. Colloid Interface Sci. 2018, 529, 306–313. [Google Scholar] [CrossRef]
- Henni, A.; Harfouche, N.; Karar, A.; Zerrouki, D.; Perrin, F.X.; Rosei, F. Synthesis of Graphene–ZnO Nanocomposites by a One-Step Electrochemical Deposition for Efficient Photocatalytic Degradation of Organic Pollutant. Solid State Sci. 2019, 98, 106039. [Google Scholar] [CrossRef]
- Maruthupandy, M.; Qin, P.; Muneeswaran, T.; Rajivgandhi, G.; Quero, F.; Song, J.M. Graphene-Zinc Oxide Nanocomposites (G-ZnO NCs): Synthesis, Characterization and Their Photocatalytic Degradation of Dye Molecules. Mater. Sci. Eng. B 2020, 254, 114516. [Google Scholar] [CrossRef]
- Kumar, S.; Kaushik, R.D.; Purohit, L.P. Novel ZnO Tetrapod-Reduced Graphene Oxide Nanocomposites for Enhanced Photocatalytic Degradation of Phenolic Compounds and MB Dye. J. Mol. Liq. 2021, 327, 114814. [Google Scholar] [CrossRef]
- Xue, B.; Zou, Y. Uniform Distribution of ZnO Nanoparticles on the Surface of Grpahene and Its Enhanced Photocatalytic Performance. Appl. Surf. Sci. 2018, 440, 1123–1129. [Google Scholar] [CrossRef]
- Wang, Y.N.; Li, J.; Wang, Q. The Performance of Daylight Photocatalytic Activity towards Degradation of MB by the Flower-like and Approximate Flower-like Complexes of Graphene with ZnO and Cerium Doped ZnO. Optik 2020, 204, 164131. [Google Scholar] [CrossRef]
- Azarang, M.; Shuhaimi, A.; Yousefi, R.; Moradi Golsheikh, A.; Sookhakian, M. Synthesis and Characterization of ZnO NPs/Reduced Graphene Oxide Nanocomposite Prepared in Gelatin Medium as Highly Efficient Photo-Degradation of MB. Ceram. Int. 2014, 40, 10217–10221. [Google Scholar] [CrossRef]
- Fan, F.; Wang, X.; Ma, Y.; Fu, K.; Yang, Y. Enhanced Photocatalytic Degradation of Dye Wastewater Using ZnO/Reduced Graphene Oxide Hybrids. Fuller. Nanotub. Carbon Nanostructures 2015, 23, 917–921. [Google Scholar] [CrossRef]
ZnO/Graphene | No. of Layers (n) | No. of Layers (NG) | La (nm) | L (nm) |
---|---|---|---|---|
S1 | 2 | 3 | 70 | 364 |
S2 | 2 | 3 | 101 | 566 |
Photocatalyst | Irradiation Light | Degradation Time (min) | Degradation Efficiency (%) | Ref. |
---|---|---|---|---|
ZnO/rGO | Visible | 60 | 99 | [68] |
ZnO-Graphene | Visible | 180 | 98 | [63] |
Sn doped ZnO/Graphene | UV | 360 | 96 | [69] |
ZnO/rGO | UV | 120 | 99 | [70] |
ZnO/rGO | Visible | 180 | 97 | [71] |
ZnO-Graphene | Visible | 180 | 99 | [30] |
ZnO-Graphene | Visible | 195 | 100 | [72] |
ZnO/GO | UV light | 90 | 98 | [73] |
ZnO/GO | UV light Visible | 120 120 | 60 38 | [74] |
ZnO/GO | Solar lamp | 90 | 77.79 | [75] |
ZnO-Graphene | Sun Light | 180 | 97.5 | Present work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venkidusamy, V.; Nallusamy, S.; Nammalvar, G.; Veerabahu, R.; Thirumurugan, A.; Natarajan, C.; Dhanabalan, S.S.; Pabba, D.P.; Abarzúa, C.V.; Kamaraj, S.-K. ZnO/Graphene Composite from Solvent-Exfoliated Few-Layer Graphene Nanosheets for Photocatalytic Dye Degradation under Sunlight Irradiation. Micromachines 2023, 14, 189. https://doi.org/10.3390/mi14010189
Venkidusamy V, Nallusamy S, Nammalvar G, Veerabahu R, Thirumurugan A, Natarajan C, Dhanabalan SS, Pabba DP, Abarzúa CV, Kamaraj S-K. ZnO/Graphene Composite from Solvent-Exfoliated Few-Layer Graphene Nanosheets for Photocatalytic Dye Degradation under Sunlight Irradiation. Micromachines. 2023; 14(1):189. https://doi.org/10.3390/mi14010189
Chicago/Turabian StyleVenkidusamy, Vasanthi, Sivanantham Nallusamy, Gopalakrishnan Nammalvar, Ramakrishnan Veerabahu, Arun Thirumurugan, Chidhambaram Natarajan, Shanmuga Sundar Dhanabalan, Durga Prasad Pabba, Carolina Venegas Abarzúa, and Sathish-Kumar Kamaraj. 2023. "ZnO/Graphene Composite from Solvent-Exfoliated Few-Layer Graphene Nanosheets for Photocatalytic Dye Degradation under Sunlight Irradiation" Micromachines 14, no. 1: 189. https://doi.org/10.3390/mi14010189
APA StyleVenkidusamy, V., Nallusamy, S., Nammalvar, G., Veerabahu, R., Thirumurugan, A., Natarajan, C., Dhanabalan, S. S., Pabba, D. P., Abarzúa, C. V., & Kamaraj, S.-K. (2023). ZnO/Graphene Composite from Solvent-Exfoliated Few-Layer Graphene Nanosheets for Photocatalytic Dye Degradation under Sunlight Irradiation. Micromachines, 14(1), 189. https://doi.org/10.3390/mi14010189