Tunable Broadband-Narrowband and Dual-Broadband Terahertz Absorber Based on a Hybrid Metamaterial Vanadium Dioxide and Graphene
Abstract
:1. Introduction
2. Structure Design and Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 2007, 1, 97–105. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Han, C.; Nie, S. Combating the Distance Problem in the Millimeter Wave and Terahertz Frequency Bands. IEEE Commun. Mag. 2018, 56, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zheng, C.; Xu, H.; Li, J.; Song, C.; Li, J.; Wu, L.; Li, J.; Yang, F.; Zhang, Y.; et al. Diatomic terahertz metasurfaces for arbitrary-to-circular polarization conversion. Nanoscale 2022, 14, 12856–12865. [Google Scholar] [CrossRef] [PubMed]
- Zhong, R.; Yang, L.; Wu, Z.; Ma, A.; Liu, S. Ultrawideband terahertz absorber withgraphene-loaded dielectric hemi-ellipsoid. Opt. Express 2020, 28, 28773–28781. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Xu, Z.; Kai, L.I.; Wang, M.; Yun, M. Tunable polarization-independent and angle-insensitive broadband terahertz absorber with graphene metamaterials. Opt. Express 2021, 29, 7158–7167. [Google Scholar] [CrossRef] [PubMed]
- Zamzam, P.; Rezaei, P. Renovation of dual-band to quad-band polarization-insensitive and wide incident angle perfect absorber based on the extra graphene layer. Micro Nanostruct. 2022, 168, 207261. [Google Scholar] [CrossRef]
- Wang, S.; Cai, C.; You, M.; Liu, F.; Werner, D.H. Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: Simulation study. Opt. Express 2019, 27, 19436. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Tan, Y.W.; Stormer, H.L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204. [Google Scholar] [CrossRef] [Green Version]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
- Ju, L.; Geng, B.; Horng, J.; Girit, C.; Martin, M.; Hao, Z.; Bechtel, H.A.; Liang, X.; Zettl, A.; Shen, Y.R.; et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 2011, 6, 630–634. [Google Scholar] [CrossRef]
- Kim, Y.; Wu, P.C.; Sokhoyan, R.; Mauser, K.; Glaudell, R.; Shirmanesh, G.K.; Atwater, H.A. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces. Nano Lett. 2019, 19, 3961–3968. [Google Scholar] [CrossRef] [Green Version]
- Chu, Q.; Song, Z.; Liu, Q.H. Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces. Appl. Phys. Express 2018, 11, 082203. [Google Scholar] [CrossRef]
- Jeong, Y.G.; Han, S.; Rhie, J.; Kyoung, J.S.; Choi, J.W.; Park, N.; Hong, S.; Kim, B.J.; Kim, H.T.; Kim, D.S. A vanadium dioxide metamaterial disengaged from insulator-to-metal transition. Nano Lett. 2015, 15, 6318–6323. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; You, C.; Mahigir, A.; Liu, T.; Xia, F.; Kong, W.; Veronis, G.; Dowling, J.P.; Dong, L.; Yun, M. Graphene-based dual-band inde-pendently tunable infrared absorber. Nanoscale 2018, 10, 15564–15570. [Google Scholar] [CrossRef] [PubMed]
- Mou, N.L.; Sun, S.L.; Dong, H.X.; Dong, S.H.; He, Q.; Zhou, L.; Zhang, L. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces. Opt. Express 2018, 26, 11728–11736. [Google Scholar] [CrossRef] [Green Version]
- Hanson, H.; George, W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys 2008, 103, 064302. [Google Scholar] [CrossRef] [Green Version]
- Ke, S.; Wang, B.; Huang, H.; Long, H.; Wang, K.; Lu, P. Plasmonic absorption enhancement in periodic cross-shaped graphene arrays. Opt. Express 2015, 23, 8888–8900. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Yi, Z.; Yang, H.; Tang, Y.; Yi, Y.; Yao, W.; Wang, J.; Yi, Y. Broadband solar energy absorber based on monolayer molybdenum disulfide using tungsten elliptical arrays. Mater. Today Energy 2020, 16, 100390. [Google Scholar] [CrossRef]
- Fan, F.; Hou, Y.; Jiang, Z.W.; Wang, X.H.; Chang, S.J. Terahertz modulator based on insulator-metal transition in photonic crystal waveguide. Appl. Opt 2012, 51, 4589–4596. [Google Scholar] [CrossRef]
- Tang, N.; Li, Y.; Chen, F.; Han, Z. In situ fabrication of a direct Z-scheme photocatalyst by immobilizing CdS quantum dots in the channels of graphene-hybridized and supported mesoporous titanium nanocrystals for high photocatalytic performance under visible light. RSC Adv. 2018, 8, 42233–42245. [Google Scholar] [CrossRef]
- Wang, G.; Wu, T.; Jiang, J.J.; Jia, Y.; Gao, Y.; Gao, Y.C. Switchable terahertz absorber from single broadband to triple-narrowband. Diam. Relat. Mater. 2022, 130, 109460. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, R.; Ou, Z.Y. Terahertz absorber with dynamically switchable dual-broadband based on hybrid metamaterial with vanadium dioxide and graphene. Opt. Express 2021, 29, 13. [Google Scholar] [CrossRef] [PubMed]
- Badri, S.H.; Gilarlue, M.M.; Saeidnahaei, S.; Kim, J.S. Narrowband-to-broadband switchable and polarization-insensitive terahertz metasurface absorber enabled by phase-change material. J. Opt. 2022, 24, 025101. [Google Scholar] [CrossRef]
- Zhang, M.; Song, Z. Terahertz bifunctional absorber based on a graphene-spacer-vanadium dioxide-spacer-metal configuration. Opt. Express 2020, 28, 8. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Jiang, T.; Peng, Z.; Li, Z.; Zhang, M.; Wang, S.; Li, L.; Liang, H.; Ruan, S.; Su, H. Tunable broadband terahertz absorber based on graphene metamaterials and VO2. Opt. Mater. 2021, 114, 110915. [Google Scholar] [CrossRef]
- Wang, F.; Gao, H.; Peng, W.; Li, R.; Chu, S.; Yu, L.; Wang, Q. Bidirectional band-switchable nano-film absorber from narrowband to broadband. Opt. Express 2021, 29, 5110–5120. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, K.D. Switchable and tunable bifunctional THz metamaterial absorber. Opt. Phys. 2022, 39, 152. [Google Scholar] [CrossRef]
Fermi Level of Graphene (eV) | Phase Transition of VO2 | Absorption Bandwidth (THz) | Functionality |
---|---|---|---|
0 | metallic phase | 3.85–6.32 | Low-frequency broadband absorption |
0 | insulating phase | 6.4, 7.32, 8.49, 9.78 | quadruple narrowband absorption |
0.7 | metallic phase | 6.92–8.92 | High-frequency broadband absorption |
0.7 | insulating phase | \ | Single fold narrowband absorption |
Reference | Number of Layers | Absorption Bandwidth (THz) | Absorption Amplitude (%) | Tunable Range (%) | Functionality | Polarization Insensitive |
---|---|---|---|---|---|---|
[21] | 7 | 0.8–2.4 | 90 | 20–95 | Broadband and narrowband absorption | Yes |
[22] | 6 | 1.05–2.35 | 90 | 5.2–90 | Dual-broadband absorption | Yes |
[23] | 3 | 5.2–6.3 | 90 | None | Broadband and narrowband absorption | Yes |
[24] | 5 | 1.05–2.35 | 90 | 45.5–90 | Broadband and narrowband absorption | Yes |
[25] | 3 | 1–2.03 | 90 | 25–99.3 | Broadband absorption | No |
This work | 4 | 3.85–6.32 | 90 | None | Broadband and narrowband absorption, Dual-broadband absorption | Yes |
Reference | Number of Layers | Absorption Bandwidth | Absorption Amplitude (%) | Functionality | Polarization Insensitive |
---|---|---|---|---|---|
[21] | 7 | 0.7, 2.1, 3.9 THz | 100, 100,100 | Triple narrowband absorption | Yes |
[26] | 6 | 771 nm | 99.90 | Single narrowband absorption | Yes |
[27] | 6 | 0.6, 1.6, 2.8, 3.9, 5.2, 6.3, 7.4, 8.5, 9.6 THz | 90, 90, 90, 90, 90, 90, 90, 90, 90 | Nine narrowband absorption | Yes |
This work | 4 | 6.4, 7.32, 8.49, 9.78 THz | 95.2, 97, 89.1, 73.3 | Four narrowband absorption | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Liu, Y.; Chen, Y.; Chen, W.; Guo, H.; Wu, Q.; Li, M. Tunable Broadband-Narrowband and Dual-Broadband Terahertz Absorber Based on a Hybrid Metamaterial Vanadium Dioxide and Graphene. Micromachines 2023, 14, 201. https://doi.org/10.3390/mi14010201
Li J, Liu Y, Chen Y, Chen W, Guo H, Wu Q, Li M. Tunable Broadband-Narrowband and Dual-Broadband Terahertz Absorber Based on a Hybrid Metamaterial Vanadium Dioxide and Graphene. Micromachines. 2023; 14(1):201. https://doi.org/10.3390/mi14010201
Chicago/Turabian StyleLi, Jing, Yanfei Liu, Yu Chen, Wenqing Chen, Honglei Guo, Qiannan Wu, and Mengwei Li. 2023. "Tunable Broadband-Narrowband and Dual-Broadband Terahertz Absorber Based on a Hybrid Metamaterial Vanadium Dioxide and Graphene" Micromachines 14, no. 1: 201. https://doi.org/10.3390/mi14010201
APA StyleLi, J., Liu, Y., Chen, Y., Chen, W., Guo, H., Wu, Q., & Li, M. (2023). Tunable Broadband-Narrowband and Dual-Broadband Terahertz Absorber Based on a Hybrid Metamaterial Vanadium Dioxide and Graphene. Micromachines, 14(1), 201. https://doi.org/10.3390/mi14010201