Event-Based Optical Flow Estimation with Spatio-Temporal Backpropagation Trained Spiking Neural Network
Abstract
:1. Introduction
1.1. The Related Work to Predict Optical Flow for Event Camera
1.2. The Main Contributions of This Paper
- Build a spike neural network architecture that is more suitable for discrete spatiotemporal data stream so that it can directly process discrete spatiotemporal data of the event camera, reduce the amount of computation, and retain the advantage of the low data volume of event cameras;
- Aiming at the problem that the existing training methods of the spike neural network mainly focus on the spatial domain but pay less attention to the time domain, the network is trained using high-performance spatial temporal backpropagation combined with the spatiotemporal information of the event camera to improve the accuracy of optical flow prediction.
2. Materials and Methods
2.1. Spiking Input Event Representation
2.2. Spiking Neuron Models
2.3. Network Architecture
2.4. Self-Supervised Learning of Optical Flow via Gray Image
2.5. Spatio-Temporal Backpropagation
2.6. Dataset
3. Experiment
3.1. Train Detail
3.2. Performance and Comparison with Other Methods
3.2.1. Evaluation Index
3.2.2. Experience Result
3.3. Ablation Studies
3.3.1. Comparison for Networks
3.3.2. Comparison for Event Slicing Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, C.; Kosta, A.K.; Zhu, A.Z.; Chaney, K.; Daniilidis, K.; Roy, K. Spike-FlowNet: Event-based Optical Flow Estimation with Energy-Efficient Hybrid Neural Networks. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020. [Google Scholar]
- Brandli, C.; Berner, R.; Yang, M.; Liu, S.-C.; Delbruck, T. A 240 × 180 130 db 3 µs latency global shutter spatiotemporal vision sensor. IEEE J. Solid-State Circuits 2014, 49, 2333–2341. [Google Scholar] [CrossRef]
- Delbruck, T. Neuromorophic vision sensing and processing. In Proceedings of the 46th European Solid-State Device Research Conference, Lausanne, Switzerland, 12–15 September 2016; pp. 7–14. [Google Scholar]
- Gallego, G.; Delbrück, T.; Orchard, G.; Bartolozzi, C.; Taba, B.; Censi, A.; Leutenegger, S.; Davison, A.J.; Conradt, J.; Daniilidis, K. Event-based vision: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 154–180. [Google Scholar] [CrossRef] [PubMed]
- Posch, C.; Matolin, D.; Wohlgenannt, R. A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS. IEEE J. Solid-State Circuits 2010, 46, 259–275. [Google Scholar] [CrossRef]
- Glover, A.; Bartolozzi, C. Event-driven ball detection and gaze fixation in clutter. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, Korea, 9–14 October 2016; pp. 2203–2208. [Google Scholar]
- Zhang, Y.; Zhao, Y.; Lv, H.; Feng, Y.; Liu, H.; Han, C. Adaptive Slicing Method of the Spatiotemporal Event Stream Obtained from a Dynamic Vision Sensor. Sensors 2022, 22, 2614. [Google Scholar] [CrossRef] [PubMed]
- Glover, A.; Bartolozzi, C. Robust visual tracking with a freely-moving event camera. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, 24–28 September 2017; pp. 3769–3776. [Google Scholar]
- Piątkowska, E.; Belbachir, A.N.; Schraml, S.; Gelautz, M. Spatiotemporal multiple persons tracking using dynamic vision sensor. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, RI, USA, 16–21 June 2012; pp. 35–40. [Google Scholar]
- Colonnier, F.; Della Vedova, L.; Orchard, G. ESPEE: Event-Based Sensor Pose Estimation Using an Extended Kalman Filter. Sensors 2021, 21, 7840. [Google Scholar] [CrossRef] [PubMed]
- Won, J.-Y.; Ryu, H.; Delbruck, T.; Lee, J.H.; Hu, J. Proximity sensing based on a dynamic vision sensor for mobile devices. IEEE Trans. Ind. Electron. 2014, 62, 536–544. [Google Scholar] [CrossRef]
- Chin, T.-J.; Bagchi, S.; Eriksson, A.; Van Schaik, A. Star tracking using an event camera. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019. [Google Scholar]
- Chen, G.; Chen, J.; Lienen, M.; Conradt, J.; Röhrbein, F.; Knoll, A.C. FLGR: Fixed length gists representation learning for RNN-HMM hybrid-based neuromorphic continuous gesture recognition. Front. Neurosci. 2019, 13, 73. [Google Scholar] [CrossRef] [PubMed]
- Benosman, R.; Ieng, S.-H.; Clercq, C.; Bartolozzi, C.; Srinivasan, M. Asynchronous frameless event-based optical flow. Neural Netw. 2012, 27, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Brosch, T.; Tschechne, S.; Neumann, H. On event-based optical flow detection. Front. Neurosci. 2015, 9, 137. [Google Scholar] [CrossRef] [Green Version]
- Aung, M.T.; Teo, R.; Orchard, G. Event-based plane-fitting optical flow for dynamic vision sensors in FPGA. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems, Florence, Italy, 27–30 May 2018; pp. 1–5. [Google Scholar]
- Benosman, R.; Clercq, C.; Lagorce, X.; Ieng, S.-H.; Bartolozzi, C. Event-based visual flow. IEEE Trans. Neural Netw. Learn. Syst. 2013, 25, 407–417. [Google Scholar] [CrossRef]
- Barranco, F.; Fermuller, C.; Aloimonos, Y. Bio-inspired motion estimation with event-driven sensors. In Proceedings of the International Work-Conference on Artificial Neural Networks, Palma de Mallorca, Spain, 10–12 June 2015; pp. 309–321. [Google Scholar]
- Gallego, G.; Rebecq, H.; Scaramuzza, D. A unifying contrast maximization framework for event cameras, with applications to motion, depth, and optical flow estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3867–3876. [Google Scholar]
- Zhu, A.Z.; Atanasov, N.; Daniilidis, K. Event-based feature tracking with probabilistic data association. In Proceedings of the IEEE International Conference on Robotics and Automation, Singapore, 29 May–3 June 2017; pp. 4465–4470. [Google Scholar]
- Liu, M.; Delbruck, T. ABMOF: A novel optical flow algorithm for dynamic vision sensors. arXiv 2018, arXiv:1805.03988. [Google Scholar]
- Zhu, A.Z.; Yuan, L.; Chaney, K.; Daniilidis, K. EV-FlowNet: Self-supervised optical flow estimation for event-based cameras. arXiv 2018, arXiv:1802.06898. [Google Scholar]
- Paredes-Vallés, F.; de Croon, G.C. Back to event basics: Self-supervised learning of image reconstruction for event cameras via photometric constancy. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 3446–3455. [Google Scholar]
- Zhu, A.Z.; Yuan, L.; Chaney, K.; Daniilidis, K. Unsupervised Event-based Learning of Optical Flow, Depth, and Egomotion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Gehrig, M.; Millhäusler, M.; Gehrig, D.; Scaramuzza, D. E-raft: Dense optical flow from event cameras. In Proceedings of the International Conference on 3D Vision, London, UK, 1–3 December 2021; pp. 197–206. [Google Scholar]
- Lee, C.; Kosta, A.K.; Roy, K. Fusion-FlowNet: Energy-efficient optical flow estimation using sensor fusion and deep fused spiking-analog network architectures. In Proceedings of the International Conference on Robotics and Automation, Philadelphia, PA, USA, 23–27 May 2022; pp. 6504–6510. [Google Scholar]
- Stoffregen, T.; Scheerlinck, C.; Scaramuzza, D.; Drummond, T.; Barnes, N.; Kleeman, L.; Mahony, R. Reducing the sim-to-real gap for event cameras. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 534–549. [Google Scholar]
- Li, Z.; Shen, J.; Liu, R. A lightweight network to learn optical flow from event data. In Proceedings of the 25th International Conference on Pattern Recognition, Milano, Italy, 10–15 January 2021; pp. 1–7. [Google Scholar]
- Ye, C.; Mitrokhin, A.; Fermüller, C.; Yorke, J.A.; Aloimonos, Y. Unsupervised learning of dense optical flow, depth and egomotion with event-based sensors. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 5831–5838. [Google Scholar]
- Gehrig, D.; Loquercio, A.; Derpanis, K.G.; Scaramuzza, D. End-to-end learning of representations for asynchronous event-based data. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 5633–5643. [Google Scholar]
- Wu, Y.; Deng, L.; Li, G.; Zhu, J.; Shi, L. Spatio-temporal backpropagation for training high-performance spiking neural networks. Front. Neurosci. 2018, 12, 331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parameshwara, C.M.; Li, S.; Fermüller, C.; Sanket, N.J.; Evanusa, M.S.; Aloimonos, Y. SpikeMS: Deep spiking neural network for motion segmentation. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Prague, Czech Republic, 27 September–1 October 2021; pp. 3414–3420. [Google Scholar]
- Sun, D.; Roth, S.; Black, M.J. A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int. J. Comput. Vis. 2014, 106, 115–137. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Deng, L.; Li, G.; Zhu, J.; Shi, L. Direct Training for Spiking Neural Networks: Faster, Larger, Better. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; pp. 1311–1318. [Google Scholar]
- Zheng, H.; Wu, Y.; Deng, L.; Hu, Y.; Li, G. Going deeper with directly-trained larger spiking neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, USA, 2–9 February 2021; pp. 11062–11070. [Google Scholar]
- Zhu, A.Z.; Thakur, D.; Özaslan, T.; Pfrommer, B.; Kumar, V.; Daniilidis, K. The multivehicle stereo event camera dataset: An event camera dataset for 3D perception. IEEE Robot. Autom. Lett. 2018, 3, 2032–2039. [Google Scholar] [CrossRef]
- Ding, Z.; Zhao, R.; Zhang, J.; Gao, T.; Xiong, R.; Yu, Z.; Huang, T. Spatio-temporal recurrent networks for event-based optical flow estimation. In Proceedings of the AAAI Conference on Artificial Intelligence, State College, PA, USA, 22 February–1 March 2022; pp. 525–533. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; Kautz, J. Pruning Convolutional Neural Networks for Resource Efficient Transfer Learning. arXiv 2016, arXiv:1611.06440. [Google Scholar]
- Horowitz, M. 1.1 Computing’s energy problem (and what we can do about it). In Proceedings of the IEEE International Solid- State Circuits Conference, San Francisco, CA, USA, 9–13 February 2014. [Google Scholar]
dt = 1 Frame | Indoor Flying1 | Indoor Flying2 | Indoor Flying3 | Outdoor Day1 | ||||
---|---|---|---|---|---|---|---|---|
AEE | %Outlier | AEE | %Outlier | AEE | %Outlier | AEE | %Outlier | |
Zhu et al. [24] | 0.58 | 0.0 | 1.02 | 4.0 | 0.87 | 3.0 | 0.32 | 0.0 |
EV-FlowNet [22] | 1.03 | 2.2 | 1.72 | 15.1 | 1.53 | 11.9 | 0.49 | 0.2 |
Spike-FlowNet [1] | 0.84 | 0.0 | 1.28 | 7.0 | 1.11 | 4.6 | 0.49 | 0.0 |
STRN -FlowNet [37] | 0.57 | 0.1 | 0.79 | 1.6 | 0.72 | 1.3 | 0.42 | 0.0 |
ours | 0.76 | 0.0 | 1.13 | 6 | 0.95 | 4 | 0.45 | 0.0 |
Indoor Flying1 | Indoor Flying2 | Indoor Flying3 | Outdoor Day1 | |
---|---|---|---|---|
Spike Activity | 0.38% | 0.75% | 0.62% | 0.47% |
Num. Operations Of SNN | 0.37 × 108 | 0.74 × 108 | 0.60 × 108 | 0.48 × 108 |
Num. Operations Of CNN | 7.89 × 109 | |||
Energy benefit | 1088× | 559× | 671× | 838× |
Compute-energy Reduction | 99.91% | 99.82% | 99.85% | 99.88% |
Indoor Flying1 | Indoor Flying2 | Indoor Flying3 | Outdoor Day1 | |
---|---|---|---|---|
Constant time interval | 0.78 | 1.14 | 0.96 | 0.51 |
adaptive slicing | 0.76 | 1.13 | 0.95 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Lv, H.; Zhao, Y.; Feng, Y.; Liu, H.; Bi, G. Event-Based Optical Flow Estimation with Spatio-Temporal Backpropagation Trained Spiking Neural Network. Micromachines 2023, 14, 203. https://doi.org/10.3390/mi14010203
Zhang Y, Lv H, Zhao Y, Feng Y, Liu H, Bi G. Event-Based Optical Flow Estimation with Spatio-Temporal Backpropagation Trained Spiking Neural Network. Micromachines. 2023; 14(1):203. https://doi.org/10.3390/mi14010203
Chicago/Turabian StyleZhang, Yisa, Hengyi Lv, Yuchen Zhao, Yang Feng, Hailong Liu, and Guoling Bi. 2023. "Event-Based Optical Flow Estimation with Spatio-Temporal Backpropagation Trained Spiking Neural Network" Micromachines 14, no. 1: 203. https://doi.org/10.3390/mi14010203
APA StyleZhang, Y., Lv, H., Zhao, Y., Feng, Y., Liu, H., & Bi, G. (2023). Event-Based Optical Flow Estimation with Spatio-Temporal Backpropagation Trained Spiking Neural Network. Micromachines, 14(1), 203. https://doi.org/10.3390/mi14010203