Simulation and Experimental Analysis of Surface Defects in Turning of TiCp/TC4 Composites
Abstract
:1. Introduction
2. Finite Element Modeling and Test Conditions
2.1. Finite Element Modeling
2.1.1. Establishment of the Constitutive Matrix Model
2.1.2. Establishment of the Constitutive Particle Model
2.1.3. Establishment of Interface Cohesion Model
2.1.4. Grid and Boundary Conditions
2.2. Conditions and Methods of Cutting Test
2.2.1. Materials and Conditions
2.2.2. Test Scheme
2.2.3. Test Observation Equipment
3. Single Particle Cutting Simulation Results and Testing Analysis
3.1. Cutting the Middle of the Particle
3.2. Cutting the Upper Part of the Particle
3.3. Cutting the Lower Part of the Particle
4. Analysis of Cutting Surface Defects of TiCp/TC4 Composite
4.1. Construction of TiC Particle Random Distribution Simulation Model
4.2. Surface Defect Analysis of Brittle Particle Fracture
4.3. Particle Debonding Surface Defect Analysis
4.4. Analysis of Microcrack on Machining Surface
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ding, W.; Xi, X.; Zhan, J.; Xu, J.; Fu, Y.; Su, H. Research status and future development of grinding technology of titanium materials for aeroengines. Chin. J. Aeronaut. 2019, 40, 022763. [Google Scholar] [CrossRef]
- Hayat, M.; Singh, H.; He, Z.; Cao, P. Titanium metal matrix composites: An overview. Compos. Part A 2019, 121, 418–438. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Q.; Zhan, Z.; Li, L.; He, N.; Shrestha, R. An experimental study on milling of high-volume fraction SiCP/Al composites with PCD tools of different grain size. Int. J. Adv. Manuf. Technol. 2015, 79, 1699–1705. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, W.; Jiang, R.; Lin, K.; Song, G. Surface integrity of milling in-situ TiB2 particle reinforced Al matrix composites. Int. J. Refract. Met. Hard Mater. 2016, 54, 407–416. [Google Scholar] [CrossRef]
- Qiao, Y.; Fan, N.; Guo, P.; Bai, Y.; Wang, S. Surface integrity analysis in turning A03190/304 composites with network reinforcement. Eng. Sci. Technol. Int. J. 2016, 19, 1966–1970. [Google Scholar] [CrossRef] [Green Version]
- Huo, F.S.; Huan, H.X.; Xu, J.H. Experimental study on turning particle reinforced titanium matrix composites. Diam. Abras. Eng. 2020, 5, 9–14. [Google Scholar]
- Wu, X. Research on Cutting Pararneters Simulation and Experiment of SiC/Al Composites. Ph.D. Thesis, North China Electric Power University, Baoding, China, 2016. [Google Scholar]
- Elkaseer, A.; Abdelaziz, A.; Saber, M.; Nassef, A. FEM-Based Study of Precision Hard Turning of Stainless Steel 316L. Materials 2019, 12, 2522. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Xie, L.; Xue, X.; Wang, X. Research on 3D milling simulation of SiCp/Al composite based on a phenomenological model. Int. J. Adv. Manuf. Technol. 2017, 92, 2715–2723. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, K.; Ding, H.; Chen, S.; Zhao, L. Simulation study of the influence of cutting speed and tool–particle interaction location on surface formation mechanism in micromachining SiCp/Al composites. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2017, 232, 2044–2056. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, W.; Zhang, L. A micromechanics analysis of the material removal mechanisms in the cutting of ceramic particle reinforced metal matrix composites. Mach. Sci. Technol. 2018, 22, 638–651. [Google Scholar] [CrossRef]
- Laghari, R.A.; Li, J.; Wu, Y. Study of Machining Process of SiCp/Al Particle Reinforced Metal Matrix Composite Using Finite Element Analysis and Experimental Verification. Materials 2020, 13, 5524. [Google Scholar] [CrossRef] [PubMed]
- Ghandehariun, A.; Kishawy, H.A.; Umer, U.; Hussein, H.M. On tool–workpiece interactions during machining metal matrix composites: Investigation of the effect of cutting speed. Int. J. Adv. Manuf. Technol. 2016, 84, 2423–2435. [Google Scholar] [CrossRef]
- Meng, Q.; Wang, Z. Prediction of interfacial strength and failure mechanisms in particle-reinforced metal-matrix composites based on a micromechanical model. Eng. Fract. Mech. 2015, 142, 170–183. [Google Scholar] [CrossRef]
- Pramanik, A.; Zhang, L.C.; Arsecularatne, J.A. An FEM investigation into the behavior of metal matrix composites: Tool–particle interaction during orthogonal cutting. Int. J. Mach. Tools Manuf. 2007, 47, 1497–1506. [Google Scholar] [CrossRef]
- Zhang, P.; Yue, X.; Zhang, Q.; Zong, C.; Lu, W.; Fang, Y. Investigation on the influence of SiC particle parameters on the machinability of SiCp/Al composite. Vacuum 2021, 191, 110340. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, W.; Yang, K.; Chen, W.; Liu, T. Investigation on cutting mechanism of SiCp/Al composites in precision turning. Int. J. Adv. Manuf. Technol. 2019, 100, 963–972. [Google Scholar] [CrossRef]
- Huan, H.; Xu, W.; Zhao, B.; Zhang, K.; Pu, J.; Zhu, C. Simulation Study of Ultrasonic Elliptical Vibration Cutting of TiC Particle-Reinforced Titanium Matrix Composites. Metals 2022, 12, 1769. [Google Scholar] [CrossRef]
- Wang, T.; Xie, L.; Wang, X. Simulation study on defect formation mechanism of the machined surface in milling of high volume fraction SiCp/Al composite. Int. J. Adv. Manuf. Technol. 2015, 79, 1185–1194. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, L. Microstructure-based three-dimensional characterization of chip formation and surface generation in the machining of particulate-reinforced metal matrix composites. Int. J. Extrem. Manuf. 2020, 2, 045103. [Google Scholar] [CrossRef]
- Fan, Y.; Xu, Y.; Hao, Z.; Lin, J. Dynamic behavior description and three-dimensional cutting simulation of SiCp/Al composites with high volume fraction. J. Manuf. Process. 2022, 77, 174–189. [Google Scholar] [CrossRef]
- Dai, J.; Ding, W.; Zhang, L.; Xu, J.; Su, H. Understanding the effects of grinding speed and undeformed chip thickness on the chip formation in high-speed grinding. J. Adv. Manuf. Technol 2015, 81, 995–1005. [Google Scholar] [CrossRef]
- Dandekar, C.; Shin, Y. Experimental evaluation of laser-assisted machining of silicon carbide particle-reinforced aluminum matrix composites. J. Adv. Manuf. Technol. 2013, 66, 1603–1610. [Google Scholar] [CrossRef]
- Fu, D.; Ding, W.; Yang, S.; Miao, Q.; Fu, Y. Formation mechanism and geometry characteristics of exit-direction burrs generated in surface grinding of Ti-6Al-4V titanium alloy. J. Adv. Manuf. Technol 2017, 89, 2299–2313. [Google Scholar] [CrossRef]
- Wang, T. Fundamental Study on High-Speed Milling of High-Volume Fraction SiCp/Al Composite. Ph.D. Thesis, Beijing Institute of Technology, Beijing, China, 2015. [Google Scholar]
- Liu, C. Simulation Analysis of Grinding Force in High Speed Grinding of Titanium Matrix Composites. Chin. J. Mech. Manuf. Autom. 2019, 48, 89–93. [Google Scholar] [CrossRef]
- Huan, H. Research on Machinability of Particle Reinforced Titanium Matrix Composites. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2018. [Google Scholar]
- Chaabani, L.; Piquard, R.; Abnay, R.; Fontaine, M.; Gilbin, A.; Picart, P.; Thibaud, S.; D’Acunto, A.; Dudzinski, D. Study of the Influence of Cutting Edge on Micro Cutting of Hardened Steel Using FE and SPH Modeling. Micromachines 2022, 13, 1079. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Lin, J.; Lu, M.; Jing, X.; Jin, Y.; Song, D. Analyzing the Effect of Particle Shape on Deformation Mechanism during Cutting Simulation of SiC P/Al Composites. Micromachines 2021, 12, 953. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Kwan, A.; Chan, H. Mesoscopic study of concrete I: Generation of random aggregate structure and finite element mesh. Comput. Struct. 1999, 70, 533–544. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
A (Mpa) | 1098 |
B (Mpa) | 1092 |
Tm (°C) | 1560 |
Tr (°C) | 20 |
C | 0.01 |
n | 0.386 |
m | 0.71 |
Parameters | Values |
---|---|
d1 | −0.09 |
d2 | 0.27 |
d3 | 0.48 |
d4 | 0.014 |
d5 | 3.87 |
Parameters | Values |
---|---|
Tensile strength (Mpa) | 4390 |
Type I Fracture Energy of Materials (J/m2) | 27 |
Maintaining factor | 1 |
Cracking strain | 0.0001 |
Crack opening strain | 0.001 |
Parameters | Values |
---|---|
Materials | TiCp/TC4 composites |
Enhanced Phase Type | Particles |
Enhanced phase content (%) | 5 |
Modulus of elasticity/MPa | 121 |
Yield strength/MPa | 934.8 |
Tensile strength/MPa | 1030.2 |
Enhanced phase average size (μm) | 1.5~20 |
Hardness (HRC) | 34~36 |
Thermal conductivity | 5.708 |
Elongation at break (%) | 9.3 |
Parameters | Values |
---|---|
Tool types | PCD |
Front corner (°) | 5 |
Rear corner (°) | 8 |
Main declination (°) | 45 |
Sub-deviation angle (°) | 45 |
Blade Tilt (°) | 4 |
Grain size (μm) | 2&30 |
The radius of the tool-tip circle (mm) | 0.8 |
Parameters | Values |
---|---|
Enhanced phase content (%) | 5 |
Cutting speed (m/min) | 45 |
Feed rate (mm) | 0.08 |
Cutting depth (mm) | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huan, H.; Zhu, C.; Zhao, B.; Xu, W.; Zhang, K. Simulation and Experimental Analysis of Surface Defects in Turning of TiCp/TC4 Composites. Micromachines 2023, 14, 69. https://doi.org/10.3390/mi14010069
Huan H, Zhu C, Zhao B, Xu W, Zhang K. Simulation and Experimental Analysis of Surface Defects in Turning of TiCp/TC4 Composites. Micromachines. 2023; 14(1):69. https://doi.org/10.3390/mi14010069
Chicago/Turabian StyleHuan, Haixiang, Chilei Zhu, Biao Zhao, Wenqiang Xu, and Ke Zhang. 2023. "Simulation and Experimental Analysis of Surface Defects in Turning of TiCp/TC4 Composites" Micromachines 14, no. 1: 69. https://doi.org/10.3390/mi14010069
APA StyleHuan, H., Zhu, C., Zhao, B., Xu, W., & Zhang, K. (2023). Simulation and Experimental Analysis of Surface Defects in Turning of TiCp/TC4 Composites. Micromachines, 14(1), 69. https://doi.org/10.3390/mi14010069