High Transmission All-Optical Combinational Logic Circuits Based on a Nanoring Multi-Structure at 1.31 µm
Abstract
:1. Introduction
2. The Resonator, Structure Type, and Design Parameter Selection
3. Structure Layout and Theoretical Model
4. The Suggested All-Optical Combinational Logic Circuits
4.1. Plasmonic Half Adder Logic Circuit
4.2. Plasmonic Half Subtractor Logic Circuit
4.3. Plasmonic Full Adder Logic Circuit
4.4. Plasmonic Full Subtractor Logic Circuit
4.5. Plasmonic One Bit Comparator Logic Circuit
4.6. Comparing the New Work with Previous Research Efforts
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, S.; Liu, P.; Chen, Z.; Liu, J.; Shen, L.; Zhang, X.; Cui, J.; Li, T.; Cui, Y.; Ren, Y. High-Property Refractive Index and Bio-Sensing Dual-Purpose Sensor Based on SPPs. Micromachines 2022, 13, 846. [Google Scholar] [CrossRef]
- Tang, J.; Liu, Y.-R.; Zhang, L.-J.; Fu, X.-C.; Xue, X.-M.; Qian, G.; Zhao, N.; Zhang, T. Flexible Thermo-Optic Variable Attenuator based on Long-Range Surface Plasmon-Polariton Waveguides. Micromachines 2018, 9, 369. [Google Scholar] [CrossRef]
- Li, B.; Sun, H.; Zhang, H.; Li, Y.; Zang, J.; Cao, X.; Zhu, X.; Zhao, X.; Zhang, Z. Refractive Index Sensor Based on the Fano Resonance in Metal–Insulator–Metal Waveguides Coupled with a Whistle-Shaped Cavity. Micromachines 2022, 13, 1592. [Google Scholar] [CrossRef]
- Lezec, H.J.; Degiron, A.; Devaux, E.; Linke, R.A.; Martin-Moreno, L.; Garcia-Vidal, F.J.; Ebbesen, T.W. Beaming light from a subwavelength aperture. Science 2002, 297, 820–822. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Hu, X.; Lu, C.; Yue, S.; Yang, H.; Gong, Q. All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett. 2012, 12, 5784–5790. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Piao, X.; Park, N. Slow-light dispersion properties of multiatomic multiband coupled-resonator optical waveguides. Phys. Rev. 2012, 85, 023823. [Google Scholar] [CrossRef]
- Abbas, M.N.; Abdulnabi, S.H. Plasmonic reversible logic gates. J. Nanophotonics 2020, 14, 016003. [Google Scholar] [CrossRef]
- Yu, S.; Piao, X.; Park, N. Controlling random waves with digital building blocks based on supersymmetry. Phys. Rev. Appl. 2017, 8, 054010. [Google Scholar] [CrossRef]
- Kotb, A.; Zoiros, K.E.; Hatziefremidis, A.; Guo, C. Optical Logic Gates Based on Z-Shaped Silicon Waveguides at 1.55 μm. Micromachines 2023, 14, 1266. [Google Scholar] [CrossRef]
- Wu, Y.-D.; Hsueh, Y.-T.; Shih, T.-T. Novel All-optical Logic Gates Based on Microring Metal-insulator-metal Plasmonic Waveguides. In Proceedings of the PIERS Proceedings, Taipei, Taiwan, 25–28 March 2013. [Google Scholar]
- Nozhat, N.; Granpayeh, N. All-optical logic gates based on nonlinear plasmonic ring resonators. Appl. Opt. 2015, 54, 7944–7948. [Google Scholar] [CrossRef]
- Dolatabady, A.; Granpayeh, N. All-optical logic gates in plasmonic metal–insulator–metal nanowaveguide with slot cavity resonator. J. Nanophotonics 2017, 11, 026001. [Google Scholar] [CrossRef]
- Liu, Z.; Ding, L.; Yi, J.; Wei, Z.; Guo, J. Design of a multi-bits input optical logic device with high intensity contrast based on plasmonic waveguides structure. Opt. Commun. 2019, 430, 112–118. [Google Scholar] [CrossRef]
- Khosroshahi, H.R.; Baghban, H. Design and Analysis of Plasmonic Half-Adder Based on Metal Slot Waveguide. In Proceedings of the Iranian Conference on Optics & Photonics, Shahid Beheshti University, Tehran, Iran, 13–15 January 2015; Optics and Photonics Society of Iran: Tehran, Iran, 2015. [Google Scholar]
- Birr, T.; Zywietz, U.; Chhantyal, P.; Chichkov, B.N.; Reinhardt, C. Ultrafast surface plasmon-polariton logic gates and half-adder. Opt. Express 2015, 23, 31755–31766. [Google Scholar] [CrossRef] [PubMed]
- Janipour, M.; Karami, M.A.; Zia, A. Plasmonic adder/subtractor module based on a ring resonator filter. Iran. J. Electr. Electron. Eng. 2016, 12, 113–118. [Google Scholar]
- Kumar, S.; Singh, L.; Chen, N.K. All-optical bit magnitude comparator device using metal–insulator–metal plasmonic waveguide. Opt. Eng. 2017, 56, 121908. [Google Scholar] [CrossRef]
- Xiea, J.; Niua, X.; Hu, X.; Wang, F.; Chai, Z.; Yang, H.; Gong, Q. Ultracompact all-optical full-adder and half-adder based on nonlinear plasmonic nanocavities. Nanophotonics 2017, 6, 1161–1173. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, L.; Raghuwanshi, S.K. Design of plasmonic half-adder and half-subtractor circuits employing nonlinear effect in Mach–Zehnder interferometer. J. Comput. Electron. 2017, 16, 139–147. [Google Scholar] [CrossRef]
- Yu, S.; Piao, X.; Koo, S.; Shin, J.H.; Lee, S.H.; Min, B.; Park, N. Mode junction photonics with a symmetry breaking arrangement of mode-orthogonal heterostructures. Opt. Express 2011, 19, 25500–25511. [Google Scholar] [CrossRef]
- Serajmohammadi, S.; Alipour-Banaei, H.; Mehdizadeh, F. Proposal for realizing an all-optical half adder based on photonic crystals. Appl. Opt. 2018, 57, 1617–1621. [Google Scholar] [CrossRef]
- Gayen, D.K.; Chattopadhyay, T.; Bhattacharyya, A.; Basak, S.; Dey, A.D. All-optical half-adder/half-subtractor using terahertz optical asymmetric demultiplexer. Appl. Opt. 2014, 53, 8400–8409. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, Y.; Li, G.; Zhu, C.; Chen, A.X. Optical half-adder and half-subtracter employing the pockels effect. Opt. Express 2015, 23, 9784–9789. [Google Scholar] [CrossRef] [PubMed]
- Abdulwahid, S.H.; Wadday, A.G.; Abdulsatar, S.M. Design of optical combinational circuits utilized with hybrid plasmonic waveguides. Plasmonics 2023, 18, 9–28. [Google Scholar] [CrossRef]
- Rezaei, M.H.; Zarifkar, A. High-extinction ratio and ultra-compact two-bit comparators based on graphene-plasmonic waveguides. Appl. Opt. 2019, 58, 9829–9838. [Google Scholar] [CrossRef] [PubMed]
- Swarnakar, S.; Basha, S.C.A.; Azmathullah, S.; Prabhu, N.A.; Madhu, G.; Kumar, S. Improved design of all-optical half-adder and half-subtractor circuits using MIM plasmonic waveguides for optical networks. Opt. Quantum Electron. 2023, 55, 94. [Google Scholar] [CrossRef]
- Alali, M.J.; Raheema, M.N.; Alwahib, A.A. Nanoscale plasmonic combinational logic circuits based on an elliptical resonator. Appl. Opt. 2023, 62, 5107–5114. [Google Scholar] [CrossRef]
- Abdulwahid, S.H.; Wadday, A.G.; Sattar, S.M.A. All-optical design for multiplexer and comparator utilizing hybrid plasmonic waveguides. Appl. Opt. 2022, 61, 8864–8872. [Google Scholar] [CrossRef] [PubMed]
- Hirori, H.; Nagai, M.; Tanaka, K. Destructive interference effect on surface plasmon resonance in terahertz attenuated total reflection. Opt. Express 2005, 13, 10801–10814. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Bozhevolnyi, S.I. Radiation guiding with surface plasmon polaritons. Rep. Prog. Phys. 2012, 76, 016402. [Google Scholar] [CrossRef]
- Berini, P. Figures of merit for surface plasmon waveguides. Opt. Express 2006, 14, 13030–13042. [Google Scholar] [CrossRef]
- Abdulnabi, S.H.; Abbas, M.N. Design and simulation of an all-optical 2 × 1 plasmonic multiplexer. J. Nanophotonics 2022, 16, 016009. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. 1972, 6, 4370. [Google Scholar] [CrossRef]
- Kurkjian, C.R.; Prindle, W.R. Perspectives on the history of glass composition. J. Am. Ceram. Soc. 1998, 81, 795–813. [Google Scholar] [CrossRef]
- Jornet, J.M.; Akyildiz, I.F. Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. IEEE J. Sel. Areas Commun. 2013, 31, 685–694. [Google Scholar] [CrossRef]
- Anku, W.W.; Kiarii, E.M.; Sharma, R.; Joshi, G.M.; Shukla, S.K.; Govender, P.P. Photocatalytic degradation of pharmaceuticals using graphene based materials. A New Gener. Mater. Graphene Appl. Water Technol. 2019, 2019, 187–208. [Google Scholar]
- Choi, D.; Shin, C.K.; Yoon, D.; Chung, D.S.; Jin, Y.W.; Lee, L.P. Plasmonic optical interference. Nano Lett. 2014, 14, 3374–3381. [Google Scholar] [CrossRef] [PubMed]
- Keiser, G. FTTX Concepts and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Al-Musawi, H.K.; Al-Janabi, A.K.; Al-Abassi, S.A.; Abusiba, N.A.-H.A.; Al-Fatlawi, N.A.-H.Q. Plasmonic logic gates based on dielectric-metal-dielectric design with two optical communication bands. Optik 2020, 223, 165416. [Google Scholar] [CrossRef]
- Hecht, B.; Bielefeldt, H.; Novotny, L.; Inouye, Y.; Pohl, D.W. Local excitation, scattering, and interference of surface plasmons. Phys. Rev. Lett. 1996, 77, 1889. [Google Scholar] [CrossRef]
- Zayats, A.V.; Smolyaninov, I.I.; Maradudin, A.A. Nano-optics of surface plasmon polaritons. Phys. Rep. 2005, 408, 131–314. [Google Scholar] [CrossRef]
- Salomon, L.; Bassou, G.; Aourag, H.; Dufour, J.P.; de Fornel, F.; Carcenac, F.; Zayats, A.V. Local excitation of surface plasmon polaritons at discontinuities of a metal film: Theoretical analysis and optical near-field measurements. Phys. Rev. 2002, 65, 125409. [Google Scholar] [CrossRef]
- Patel, V.; Srivastava, K.; Sharma, P.; Kumar, V.D. Efficient coupling of light from dielectric to HIMI plasmonic waveguide. Micro Nano Lett. 2019, 14, 897–900. [Google Scholar] [CrossRef]
- Choudhary, K.; Mishra, S.; Singh, S.; Kumar, S. Design of all-optical OR/NAND logic gate using plasmonic metal-insulator-metal waveguide. In Physics and Simulation of Optoelectronic Devices XXIX; SPIE: Bellingham, WA, USA, 2021; Volume 11680. [Google Scholar]
- Abdulnabi, S.H.; Abbas, M.N. All-optical logic gates based on nanoring insulator–metal–insulator plasmonic waveguides at optical communications band. J. Nanophotonics 2019, 13, 016009. [Google Scholar] [CrossRef]
- Jasim, W.A.; Ali, F.M.; Abdullah, A.K.; AbdulNabi, M.A. Design and Simulation of Optical Logic Gates Based on (MIM) Plasmonic Waveguides and slot cavity resonator for Optical Communications. J. Phys. Conf. Ser. 2021, 1963, 012152. [Google Scholar] [CrossRef]
- Wu, Y.-D. High efficiency multi-functional all-optical logic gates based on MIM plasmonic waveguide structure with the Kerr-type nonlinear nano-ring resonators. Prog. Electromagn. 2021, 170, 79–95. [Google Scholar] [CrossRef]
- Moradi, M.; Danaie, M.; Orouji, A.A. Design of all-optical XOR and XNOR logic gates based on Fano resonance in plasmonic ring resonators. Opt. Quantum Electron. 2019, 51, 154. [Google Scholar] [CrossRef]
- Pal, A.; Ahmed, M.Z.; Swarnakar, S. An optimized design of all-optical XOR, OR, and NOT gates using plasmonic waveguide. Opt. Quantum Electron. 2021, 53, 1–13. [Google Scholar] [CrossRef]
- Floyd, T.L. Digital Fundamentals, 11th ed.; Pearson Education: London, UK, 2015. [Google Scholar]
- Abdulnabi, S.H.; Abbas, M.N. Design an all-optical combinational logic circuits based on nano-ring insulator-metal-insulator plasmonic waveguides. Photonics 2019, 6, 30. [Google Scholar] [CrossRef]
Parameter | Description | Value (nm) |
---|---|---|
H | Height and width of the structure | 300 |
Ls | Length of the side stripes | 160 |
Lm | Length of the middle stripes | 105 |
Y | Side length of the nano square resonator, Diameter of the nanoring resonator | 80 |
a | Nanoring inner radius | 30 |
Ws | Width of the stripes | 15 |
d | Distance between the stripes and resonator | 5 |
Parameter | Description | Value (nm) |
---|---|---|
H | Height of the structure | 300 |
W | Width of the structure | 650 |
Ls | Length of the side stripes | 160 |
Lm | Length of the middle stripes | 105 |
Wg | Graphene layer width | 50 |
b | Nanoring outer radius | 40 |
a | Nanoring inner radius | 30 |
Ws | Width of the stripes | 15 |
d | Distance between the stripes and nanoring | 5 |
Input Port 1 | Cont.1 | Input Port 2 | Sum (T) | Input Port 3 | Cont.2 | Cout (T) | CR (dB) | MD | CL (dB) | IL (dB) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Ports number | 1 | 3 | 2 | 4 | 5 | 7 | 8 | 8.67 | 97.8% | 0.9 | 7.77 |
Ports statue | 0 | ON (0°) | 0 | OFF (0.07) | 0 | ON (180°) | OFF (0.07) | ||||
0 | ON (0°) | 1 (0°) | ON (0.81) | 0 | ON (180°) | OFF (0.11) | |||||
1 (0°) | ON (0°) | 0 | ON (0.81) | 1 (45°) | ON (180°) | OFF (0.11) | |||||
1 (180°) | ON (0°) | 1 (45°) | OFF (0.05) | 1 (180°) | ON (180°) | ON (2.32) |
Input Port 1 | Input Port 2 | Cont.1 | D (T) | Input Port 4 | Input Port 3 | Cont.2 | Borrow (T) | CR (dB) | MD | CL (dB) | IL (dB) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ports number | 1 | 2 | 3 | 4 | 6 | 5 | 7 | 8 | 8.1 | 93% | 7.08 | 1.02 |
Ports statue | 0 | 0 | 1 (180°) | OFF (0.077) | 0 | 0 | 1 (0°) | OFF (0.07) | ||||
0 | 1 (180°) | 1 (180°) | ON (0.79) | 1 (0°) | 0 | 1 (0°) | ON (0.81) | |||||
1 (45°) | 0 | 1 (180°) | OFF (0.12) | 0 | 1 (0°) | 1 (0°) | ON (0.81) | |||||
1 (45°) | 1 (180°) | 1 (180°) | OFF (0.072) | 1 (45°) | 1 (180°) | 1 (0°) | OFF (0.05) |
Input Port 1 | Input Port 2 | Cin Port | Sum (T) | Input Port 3 | Input Port 4 | Cin Port | Cout (T) | CR (dB) | MD | CL (dB) | IL (dB) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ports number | 3 | 2 | 1 | 4 | 5 | 6 | 7 | 8 | 4.8 | 99.8% | 4.3 | 0.5 |
Ports statue | 0 | 0 | 0 | OFF | 0 | 0 | 0 | 0 | ||||
0 | 0 | 1 (180°) | ON (0.39) | 0 | 0 | 1 (0°) | OFF (0.073) | |||||
Ports number | 3 | 2 | 1 | 4 | 6 | 7 | 5 | 8 | ||||
Ports statue | 0 | 1 (0°) | 0 | ON (0.37) | 0 | 1 (0°) | 0 | OFF (0.073) | ||||
Ports number | 3 | 2 | 1 | 4 | 7 | 6 | 5 | 8 | ||||
Ports statue | 0 | 1 (180°) | 1 (45°) | OFF (0.0039) | 0 | 1 (0°) | 1 (0°) | ON (1.55) | ||||
Ports number | 1 | 2 | 3 | 4 | 7 | 6 | 5 | 8 | ||||
Ports statue | 1 (0°) | 0 | 0 | ON (0.39) | 1 (0°) | 0 | 0 | OFF (0.07) | ||||
Ports number | 3 | 2 | 1 | 4 | 7 | 6 | 5 | 8 | ||||
1 (45°) | 0 | 1 (180°) | OFF (0.12) | 1 (0°) | 0 | 1 (0°) | ON (0.77) | |||||
1 (180°) | 1 (45°) | 0 | OFF (0.11) | 1 (0°) | 1 (0°) | 0 | ON (0.8) | |||||
1 (0°) | 1 (0°) | 1 (0°) | 0 (2.3) | 1 (0°) | 1 (0°) | 1 (0°) | ON (2.3) |
Input 1 | Input 2 | Input 3 (Bin) | D (T) | Input 1 | Input 2 | Input 3 (Bin) | Bout (T) | CR (dB) | MD | CL (dB) | IL (dB) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ports number | 3 | 2 | 1 | 4 | 7 | 6 | 5 | 8 | 4.89 | 99.91% | 0.59 | 4.3 |
Ports statue | 0 | 0 | 0 | OFF | 0 | 0 | 0 | OFF | ||||
0 | 0 | 1 (0°) | ON (0.39) | 0 | 0 | 1 (0°) | ON (0.37) | |||||
0 | 1 (0°) | 0 | ON (0.37) | 0 | 1 (0°) | 0 | ON (0.4) | |||||
Ports number | 1 | 3 | 2 | 4 | 5 | 7 | 6 | 8 | ||||
Ports statue | 0 | 1 (180°) | 1 (45°) | OFF (0.11) | 0 | 1 (0°) | 1 (45°) | ON (0.6) | ||||
Ports number | 1 | 2 | 3 | 4 | 7 | 6 | 5 | 8 | ||||
Ports statue | 1 (0°) | 0 | 0 | ON (0.39) | 1 (0°) | 0 | 0 | OFF (0.07) | ||||
1 (45°) | 0 | 1 (180°) | OFF (0.12) | 1 (180°) | 0 | 1 (45°) | OFF (0.11) | |||||
1 (180°) | 1 (45°) | 0 | OFF (0.002) | 1 (45°) | 1 (180°) | 0 | OFF (0.13) | |||||
1 (0°) | 1 (0°) | 1 (0°) | ON (2.3) | 1 (0°) | 1 (0°) | 1 (0°) | ON (2.29) |
Cont.1 | Input Port 1 | Input Port 2 | Output Port A = B | Input Port 3 | Input Port 4 | Cont. 2 | Output Port A > B or A < B (T) | CR (dB) | MD | IL (dB) | CL (dB) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ports number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 5.49 | 99.87% | 4.08 | 1.41 |
Ports statue | ON (180°) | 0 | 0 | ON (0.39) | 0 | 0 | ON (0°) | OFF (0.07) | ||||
ON (180°) | 0 | 1 (45°) | 0FF (0.11) | 0 | 1 (0°) | ON (0°) | ON (0.81) | |||||
ON (180°) | 1 (45°) | 0 | 0FF (0.003) | 1 (0°) | 0 | ON (0°) | ON (0.77) | |||||
ON (180°) | 1 (180°) | 1 (180°) | ON (2.32) | 1 (180°) | 1 (45°) | ON (0°) | OFF (0.05) |
References | Used Software | Number of Combinational Circuits | Proposed Combinational Function | Size | Operating Wavelength | Complexity | Performance Parameters |
---|---|---|---|---|---|---|---|
[24] | FEM-2D | 4-comb. Logic circuits | Half Adder, Half Subtractor, Full Adder, 4-bit converter | 850 nm × 400 nm 1750 nm × 400 nm | 1310 nm | more | T, CR, MD, IL |
[25] | FDTD | 2-comb. Logic circuits | One-bit comparator, Two-bit comparator | 0.42 µm2 | 15 µm | more | T, CR |
[26] | FDTD | 2-comb. Logic circuits | Half Adder, Half Subtractor | 66 µm2 | 66 µm | more | T, CR, IL |
[27] | FEM-2D | 2-comb. Logic circuits | Half Adder, Half Subtractor | 540 nm × 250 nm | 850 nm | more | T, MD, CR, IL |
[28] | FEM-2D | 2-comb. Logic circuits | 2 × 1 Multiplexer, Comparator | 400 nm × 400 nm 1300 nm × 400 nm | 1310 nm | more | T, CR, MD, IL |
[51] | FEM-2D | 4-comb. Logic circuits | One-bit comparator, Half Adder, Full Adder, Half Subtractor | 850 nm × 400 nm | 1550 nm | more | T |
This paper | FEM-2D | 5-comb. Logic circuits | One-bit comparator, Half Adder, Full Adder, Half Subtractor, Full Subtractor | 650 nm × 300 nm | 1310 nm | less | T, CR, MD, IL, CL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadeq, S.A.; Hayati, M.; Khosravi, S. High Transmission All-Optical Combinational Logic Circuits Based on a Nanoring Multi-Structure at 1.31 µm. Micromachines 2023, 14, 1892. https://doi.org/10.3390/mi14101892
Sadeq SA, Hayati M, Khosravi S. High Transmission All-Optical Combinational Logic Circuits Based on a Nanoring Multi-Structure at 1.31 µm. Micromachines. 2023; 14(10):1892. https://doi.org/10.3390/mi14101892
Chicago/Turabian StyleSadeq, Salma Ali, Mohsen Hayati, and Saba Khosravi. 2023. "High Transmission All-Optical Combinational Logic Circuits Based on a Nanoring Multi-Structure at 1.31 µm" Micromachines 14, no. 10: 1892. https://doi.org/10.3390/mi14101892
APA StyleSadeq, S. A., Hayati, M., & Khosravi, S. (2023). High Transmission All-Optical Combinational Logic Circuits Based on a Nanoring Multi-Structure at 1.31 µm. Micromachines, 14(10), 1892. https://doi.org/10.3390/mi14101892