Long-Focusing Device for Broadband THz Applications Based on a Tunable Reflective Biprism
Abstract
:1. Introduction
2. Theoretical Modeling
2.1. Thermomechanical Model
2.2. Optical Modeling
3. Experimental Section
4. Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, Q.; He, Y.; Liu, K.; Fan, S.; Parrott, E.P.J.; Pickwell-MacPherson, E. Recent advances in terahertz technology for biomedical applications. Quant. Imaging Med. Surg. 2017, 7, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Sung, S.; Selvin, S.; Bajwa, N.; Chantra, S.; Nowroozi, B.; Garritano, J.; Goell, J.; Li, A.; Deng, S.X.; Brown, E.; et al. THz imaging system for in vivo human cornea. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Smolyanskaya, O.; Chernomyrdin, N.; Konovko, A.; Zaytsev, K.; Ozheredov, I.; Cherkasova, O.; Nazarov, M.; Guillet, J.P.; Kozlov, S.; Kistenev, V.; et al. Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids. Prog. Quantum Electron. 2018, 62, 1–77. [Google Scholar] [CrossRef]
- Zaytsev, K.; Dolganova, I.; Chernomyrdin, N.; Katyba, G.; Gavdush, A.; Cherkasova, O.; Komandin, G.; Shchedrina, M.; Khodan, A.; Ponomarev, D.; et al. The progress and perspectives of terahertz technology for diagnosis of neoplasms: A review. J. Opt. 2019, 22, 013001. [Google Scholar] [CrossRef]
- Musina, G.; Dolganova, I.; Chernomyrdin, N.; Gavdush, A.; Ulitko, V.; Cherkasova, O.; Tuchina, D.; Nikitin, P.; Alekseeva, A.; Bal, N.; et al. Optimal hyperosmotic agents for tissue immersion optical clearing in terahertz biophotonics. J. Biophotonics 2020, 13, e202000297. [Google Scholar] [CrossRef] [PubMed]
- Ellrich, F.; Bauer, M.; Schreiner, N.; Keil, A.; Pfeiffer, T.; Klier, J.; Weber, S.; Jonuscheit, J.; Friederich, F.; Molter, D.; et al. Terahertz quality inspection for automotive and aviation industries. J. Infrared Millim. Terahertz Waves 2020, 41, 470–489. [Google Scholar] [CrossRef]
- Hernandez-Serrano, A.; Corzo-Garcia, S.; Garcia-Sanchez, E.; Alfaro, M.; Castro-Camus, E. Quality control of leather by terahertz time-domain spectroscopy. Appl. Opt. 2014, 20, 7872–7876. [Google Scholar] [CrossRef]
- Headland, D.; Monnai, Y.; Abbott, D.; Fumeaux, C.; Withayachumnankul, W. Tutorial: Terahertz beamforming, from concepts to realizations. Appl. Photon. 2018, 3, 051101. [Google Scholar] [CrossRef]
- Ma, J.; Karl, N.J.; Bretin, S.; Ducournau, G.; Mittleman, D.M. Frequency-division multiplexer and demultiplexer for terahertz wireless links. Nat. Commun. 2017, 8, 729. [Google Scholar] [CrossRef]
- Ghasempour, Y.; Shrestha, R.; Charous, A.; Knightly, E.; Mittleman, D.M. Single-shot link discovery for terahertz wireless networks. Nat. Commun. 2020, 11, 2017. [Google Scholar] [CrossRef]
- Cruz, A.; Cunha, W.; Del Rosso, T.; Dmitriev, V.; Costa, K. Spectral Analysis of a SPR Sensor based on Multilayer Graphene in the Far Infrared Range. J. Microw. Optoelectron. Electromagn. Appl. 2023, 22, 184–195. [Google Scholar] [CrossRef]
- Ming, Z.; Qian, C.; Baozhu, W.; Lin, Y.; Jianchao, W.; Ruihong, W.; Weimin, H. Highly sensitive terahertz sensors based on polarization independent and multiple resonance. Opt. Commun. 2022, 507, 127519. [Google Scholar]
- Lepeshov, S.; Gorodetsky, A.; Krasnok, A.; Rafailov, E.; Belov, P. Enhancement of terahertz photoconductive antenna operation by optical nanoantennas. Laser Photonics Rev. 2017, 11, 1770001. [Google Scholar] [CrossRef]
- Yachmenev, A.; Lavrukhin, D.; Glinskiy, I.; Zenchenko, N.; Goncharov, Y.; Spektor, I.; Khabibullin, R.; Otsuji, T.; Ponomarev, D. Metallic and dielectric metasurfaces in photoconductive terahertz devices: A review. Opt. Eng. 2019, 59, 061608. [Google Scholar] [CrossRef]
- Morozov, M.; Leiman, V.; Popov, V.; Mitin, V.; Shur, M.; Karasik, V.; Ryzhii, M.; Otsuji, T.; Ryzhii, V. Optical pumping in graphene-based terahertz/far-infrared superluminescent and laser heterostructures with graded-gap black-PxAs1−x absorbing-cooling layers. Opt. Eng. 2020, 59, 061606. [Google Scholar] [CrossRef]
- Yachmenev, A.; Pushkarev, S.; Reznik, R.; Khabibullin, R.; Ponomarev, D. Arsenides and related III{V materials-based multilayered structures for terahertz applications. Progress in Cryst. Growth Charact. Mater. 2020, 59, 100485. [Google Scholar] [CrossRef]
- Sun, Q.; Chen, X.; Liu, X.; Stantchev, R.; Pickwell-MacPherson, E. Exploiting total internal reection geometry for terahertz devices and enhanced sample characterization. Adv. Opt. Mater. 2020, 8, 1900535. [Google Scholar] [CrossRef]
- Manjappa, M.; Singh, R. Materials for terahertz optical science and technology. Adv. Opt. Mater. 2020, 8, 1901984. [Google Scholar] [CrossRef]
- Islam, M.; Cordeiro, C.; Franco, M.; Sultana, J.; Cruz, A.; Abbott, D. Terahertz optical fibers. Opt. Express 2020, 28, 16089–16117. [Google Scholar] [CrossRef]
- Cabrini, S.; Liberale, C.; Cojoc, D.; Carpentiero, A.; Prasciolu, M.; Mora, S.; Degiorgio, V.; De Angelis, F.; Di Fabrizio, E. Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling. Microelectron. Eng. 2006, 83, 804–807. [Google Scholar] [CrossRef]
- Zhang, Z.; Buma, T. Terahertz imaging in dielectric media with quasi-Bessel beams. Proc. SPIE 2011, 7938, 793806. [Google Scholar]
- Trappe, N.; Mahon, R.; Lanigan, W.; Murphy, J.A.; Withington, S. The quasi-optical analysis of Bessel beams in the far infrared. Infrared Phys. Technol. 2005, 46, 233–247. [Google Scholar] [CrossRef]
- Shaukat, M.; Dean, P.; Khanna, S.; Lachab, M.; Chakraborty, S.; Linfield, E.; Davies, A. Generation of Bessel beams using a terahertz quantum cascade laser. Opt. Lett. 2009, 34, 1030–1032. [Google Scholar] [CrossRef] [PubMed]
- Ivaškevičiūtė-Povilauskienė, F.; Kizeviciuos, P.; Nacius, E.; Jokubauskis, D.; Ikamas, K.; Lisauskas, A.; Alexeeva, N.; Matulaitienė, I.; Vytautas Jukna, V.; Orlov, S.; et al. Terahertz structured light: Nonparaxial Airy imaging using silicon diffractive optics. Light Sci. Appl. 2022, 11, 326. [Google Scholar] [CrossRef] [PubMed]
- Castro-Camus, E.; Koch, M.; Hernandez-Serrano, A.I. Additive manufacture of photonic components for the terahertz band. J. Appl. Phys. 2020, 127, 210901. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Lee, E.; An, S.C.; Lim, Y.; Jun, Y.C. 3D and 4D printing for optics and metaphotonics. Nanophotonics 2020, 9, 1139–1160. [Google Scholar] [CrossRef]
- Wei, X.; Liu, C.; Niu, L.; Zhang, Z.; Wang, K.; Yang, Z.; Liu, J. Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range. Appl. Opt. 2015, 54, 10641–10649. [Google Scholar] [CrossRef]
- Niu, L.T.; Wang, J.K.; Yang, Y.Q.; Wu, Q.; Ye, X.Z.; Yang, G.; Liu, J.S.; Yu, H.Y. Diffractive elements for zero-order Bessel beam generation with application in the terahertz reflection imaging. IEEE Photonics J. 2018, 11, 5900212. [Google Scholar] [CrossRef]
- Xiang, F.; Liu, D.; Xiao, L.; Shen, S.; Yang, Z.; Liu, J.; Wang, K. Generation of a meter-scale THz diffraction-free beam based on multiple cascaded lens-axicon doublets: Detailed analysis and experimental demonstration. Opt. Express 2020, 28, 36873–36883. [Google Scholar] [CrossRef]
- Ma, Z.; Hanham, S.M.; Albella, P.; Ng, B.; Tzu, L.H.; Gong, Y.; Maier, S.A.; Zhijie, H.; Ma, M. Terahertz All-Dielectric Magnetic Mirror Metasurfaces. ACS Photonics 2016, 3, 1010–1018. [Google Scholar] [CrossRef]
- Cui, Z.; Li, L.; Ren, J.; Zhang, D.; Gu, J.; Yu, J. Broadband THz Bessel beam generation based on axicon. Proc. SPIE 2022, 12555, 1255504–1255509. [Google Scholar]
- Ulitko, V.E.; Kurlova, V.N.; Masalova, V.M.; Dolganova, I.N.; Chernomyrdin, N.V.; Zaytsev, K.I.; Katyba, G.M. Terahertz axicon fabricated by direct sedimentation of SiO2 colloidal nanoparticles in a mold. Proc. SPIE 2021, 11827, 118270M. [Google Scholar]
- Karl, N.J.; McKinney, R.W.; Monnai, Y.; Mendis, R.L.; Mittleman, D.M. Frequency-division multiplexing in the terahertz range using a leaky-wave antenna. Nat. Phot. 2015, 9, 717–720. [Google Scholar] [CrossRef]
- Matsumoto, H.; Watanabe, I.; Kasamatsu, A.; Monnai, Y. Integrated terahertz radar based on leaky-wave coherence tomography. Nat. Electron. 2020, 3, 122–129. [Google Scholar] [CrossRef]
- Hernandez-Serrano, A.I.; Pickwell-MacPherson, E. Low cost and long-focal-depth metallic axicon for terahertz frequencies based on parallel-plate-waveguides. Sci. Rep. 2021, 11, 3005. [Google Scholar] [CrossRef]
- Margheri, G. Opto-Thermally Tunable Axicon-Like Device Based on PDMS-Au Bilayers. IEEE Phot. Tech. Lett. 2022, 34, 395–398. [Google Scholar] [CrossRef]
- Liping, Z.; Jianghong, G.; Long, X. Non-diffraction fringes produced by thin biprism. Opt. Appl. 2012, 42, 699–711. [Google Scholar]
- Phing, S.H.; Mazhorova, A.; Shalaby, M.; Peccianti, M.; Clerici, M.; Pasquazi, A.; Ozturk, Y.; Ali, J.; Morandotti, R. Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique. Sci. Rep. 2015, 5, 8551. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Hongguo, L. Investigation on the optical focusing effect of Fresnel biprism. Optoelectron. Lett. 2023, 19, 151–154. [Google Scholar] [CrossRef]
- Allam; Rao, S. An intriguing interpretation of Cosine beams. arXiv 2023, arXiv:2307.14201. [Google Scholar]
- Bencheikh, A.; Chabou, S.; Boumeddine, O.C.; Bekkis, H.; Benstiti, A.; Beddiaf, L.; Moussaoui, W. Cosine beam: Diffraction-free propagation and self-healing. J. Opt. Soc. Am. A 2020, 37, C7–C14. [Google Scholar] [CrossRef] [PubMed]
- C-Sub Park, K.I.; JooKang, S.W.; Kim, H.R. A PDMS-Coated Optical Fiber Bragg Grating Sensor for Enhancing Temperature Sensitivity. J. Opt. Soc. Korea 2011, 15, 329–334. [Google Scholar] [CrossRef]
- Öm, A. Degradation Studies of Polydimethyl Siloxane. Master’s Thesis, Abo Akademi University, Turku, Finland, 2019. Available online: https://www.doria.fi/bitstream/handle/10024/169311/orn_anton.pdf?sequence=2 (accessed on 17 September 2023).
- Wang, Y.; Yan, S.; Friberg, A.T.; Kuebel, D.; Visser, T.D. Electromagnetic diffraction theory of refractive axicon lenses. J. Opt. Soc. Am. A 2017, 34, 1201–1211. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Lee, C.; Robertson, C.S.; Nguyen, A.H.; Kahraman, M.; Wachsmann-Hogiu, S. Thickness of a metallic film, in addition to its roughness, plays a significant role in SERS activity. Sci. Rep. 2015, 5, 11644. [Google Scholar] [CrossRef]
- Cortelli, G.; Patruno, L.; Cramer, T.; Murgia, M.; Fraboni, B.; De Miranda, S. Atomic Force Microscopy Nanomechanics of Hard Nanometer-Thick Films on Soft Substrates: Insights into Stretchable Conductors. ACS Appl. Nano Mater. 2021, 4, 8376–8382. [Google Scholar] [CrossRef]
- Munaro, A.P.; Da Cunha, G.P.; Filgueiras, J.G.; Pinto, J.M.; Munaro, M.; De Azevedo, E.R.; Akcelrud, L.C. Ageing and structural changes in PDMS rubber investigated by time domain NMR. Polym. Degrad. Stab. 2019, 166, 300–306. [Google Scholar] [CrossRef]
Frequency (THz) | fbp (mm) | DOFbp (mm) | DOFG (mm) |
---|---|---|---|
1 | 3.4 | 15.8 | 2.2 |
3 | 7.1 | 18.7 | 3.1 |
5 | 8.0 | 19.0 | 2.44 |
10 | 6.1 | 19.2 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Margheri, G.; Del Rosso, T. Long-Focusing Device for Broadband THz Applications Based on a Tunable Reflective Biprism. Micromachines 2023, 14, 1939. https://doi.org/10.3390/mi14101939
Margheri G, Del Rosso T. Long-Focusing Device for Broadband THz Applications Based on a Tunable Reflective Biprism. Micromachines. 2023; 14(10):1939. https://doi.org/10.3390/mi14101939
Chicago/Turabian StyleMargheri, Giancarlo, and Tommaso Del Rosso. 2023. "Long-Focusing Device for Broadband THz Applications Based on a Tunable Reflective Biprism" Micromachines 14, no. 10: 1939. https://doi.org/10.3390/mi14101939
APA StyleMargheri, G., & Del Rosso, T. (2023). Long-Focusing Device for Broadband THz Applications Based on a Tunable Reflective Biprism. Micromachines, 14(10), 1939. https://doi.org/10.3390/mi14101939