Ultrafast Infrared Laser Crystallization of Amorphous Ge Films on Glass Substrates
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Transmittance and Reflectance Spectroscopy
3.2. Modification, Damage, and Ablation Thresholds
3.3. Raman Spectra
3.4. Fractions of Nanocrystalline Phase
3.5. Annealing Mechanisms
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shieh, J.-M.; Chen, Z.-H.; Dai, B.-T.; Wang, Y.-C.; Zaitsev, A.; Pana, C.-L. Near-infrared femtosecond laser-induced crystallization of amorphous silicon. Appl. Phys. Lett. 2004, 85, 1232. [Google Scholar] [CrossRef]
- Lee, G.J.; Song, S.H.; Lee, Y.P.; Cheong, H.; Yoon, C.S.; Son, Y.D.; Jang, J. Arbitrary surface structuring of amorphous silicon films based on femtosecond-laser-induced crystallization. Appl. Phys. Lett. 2006, 89, 151907. [Google Scholar] [CrossRef]
- Volodin, V.A.; Efremov, M.D.; Kachurin, G.A.; Cherkov, A.G.; Deutschmann, M.; Baersch, N. Phase Transitions in a-Si:H Films on a Glass Irradiated by High-Power Femtosecond Pulses: Manifestation of Nonlinear and Nonthermal Effects. JETP Lett. 2007, 86, 119. [Google Scholar] [CrossRef]
- Salihoglu, O.; Kurum, U.; Gul Yaglioglu, H.; Elmali, A.; Aydinli, A. Femtosecond laser crystallization of amorphous Ge. J. Appl. Phys. 2011, 109, 123108. [Google Scholar] [CrossRef]
- Shan, D.; Wang, M.; Sun, D.; Cao, Y. The Electronic Properties of Boron-Doped Germanium Nanocrystals Films. Discov. Nano 2023, in press. [CrossRef]
- Ishiyama, T.; Igura, K.; Suemasu, T.; Toko, K. Metal-induced lateral crystallization of germanium thin films. Mater. Des. 2023, 232, 112116. [Google Scholar] [CrossRef]
- Korchagina, T.T.; Volodin, V.A.; Popov, A.A.; Khor’kov, K.S.; Gerke, M.N. Formation of Silicon Nanocrystals in SiNx Film on PET Substrates Using Femtosecond Laser Pulses. Tech. Phys. Lett. 2011, 37, 622–625. [Google Scholar] [CrossRef]
- Prince, M.B. Drift Mobilities in Semiconductors. I. Germanium. Phys. Rev. 1953, 92, 681–687. [Google Scholar] [CrossRef]
- Imajo, T.; Ishiyama, T.; Saitoh, N.; Yoshizawa, N.; Suemasu, T.; Toko, K. Record-high hole mobility germanium on flexible plastic with controlled interfacial reaction. ACS Appl. Electron. Mater. 2022, 4, 269–275. [Google Scholar] [CrossRef]
- Nozawa, K.; Nishida, T.; Ishiyama, T.; Suemasu, T.; Toko, K. n-Type Polycrystalline Germanium Layers Formed by Impurity-Doped Solid-Phase Growth. ACS Appl. Electron. Mater. 2023, 5, 1444–1450. [Google Scholar] [CrossRef]
- Higashi, H.; Nakano, M. A Crystalline Germanium Flexible Thin-Film Transistor. Appl. Phys. Lett. 2017, 111, 222105. [Google Scholar] [CrossRef]
- Volodin, V.A.; Cheng, Y.; Bulgakov, A.V.; Levy, Y.; Beránek, J.; Nagisetty, S.S.; Zukerstein, M.; Popov, A.A.; Bulgakova, N.M. Single-shot selective femtosecond and picosecond infrared laser crystallization of an amorphous Ge/Si multilayer stack. Opt. Laser Technol. 2023, 161, 109161. [Google Scholar] [CrossRef]
- Bulgakov, A.V.; Beránek, J.; Volodin, V.A.; Cheng, Y.; Levy, Y.; Nagisetty, S.S.; Zukerstein, M.; Popov, A.A.; Bulgakova, N.M. Ultrafast Infrared Laser Crystallization of Amorphous Si/Ge Multilayer Structures. Materials 2023, 16, 3572. [Google Scholar] [CrossRef] [PubMed]
- Tomlin, S.G.; Khawaja, E.D. The optical properties of amorphous and crystalline germanium. J. Phys. C Solid State Phys. 1976, 9, 4335–4347. [Google Scholar] [CrossRef]
- Perevalov, T.V.; Volodin, V.A. Electronic structure and nanoscale potential fluctuations in strongly nonstoichiometric PECVD SiOx. J. Non Cryst. Solids 2020, 529, 119796. [Google Scholar] [CrossRef]
- Bonse, J.; Baudach, S.; Krüger, J.; Kautek, W.; Lenzner, M. Femtosecond Laser Ablation of Silicon–Modification Thresholds and Morphology. Appl. Phys. A 2002, 74, 19–25. [Google Scholar] [CrossRef]
- Werner, K.; Gruzdev, V.; Talisa, N.; Kafka, K.; Austin, D.; Liebig, C.M.; Chowdhury, E. Single-Shot Multi-Stage Damage and Ablation of Silicon by Femtosecond Mid-infrared Laser Pulses. Sci. Rep. 2019, 9, 19993. [Google Scholar] [CrossRef]
- Liu, J.M. Simple Technique for Measurements of Pulsed Gaussian-Beam Spot Sizes. Opt. Lett. 1982, 7, 196–198. [Google Scholar] [CrossRef]
- Starinskiy, S.V.; Shukhov, Y.G.; Bulgakov, A.V. Laser-Induced Damage Thresholds of Gold, Silver and Their Alloys in Air and Water. Appl. Surf. Sci. 2017, 396, 1765–1774. [Google Scholar] [CrossRef]
- Wihl, M.; Cardona, M. Raman scattering in amorphous Ge and III-V compounds. J. Non-Cryst. Solids 1972, 8, 172–178. [Google Scholar] [CrossRef]
- Parker, J.H.; Feldman, D.W. Raman scattering by Silicon and Germanium. Phys. Rev. 1967, 155, 712–714. [Google Scholar] [CrossRef]
- Volodin, V.A.; Marin, D.V. Applying of Improved Phonon Confinement Model for Analysis of Raman Spectra of Germanium Nanocrystals. J. Exp. Theor. Phys. 2014, 118, 65–71. [Google Scholar] [CrossRef]
- Zhang, H.; Kochubei, S.A. On Raman Scattering Cross Section Ratio of Amorphous to Nanocrystalline Germanium. Solid State Commun. 2020, 313, 113897. [Google Scholar] [CrossRef]
- Tsu, R.; Gonzalez-Hernandez, J. Critical volume fraction of crystallinity for conductivity percolation in phosphorus-doped Si: F: H alloys. Appl. Phys. Lett. 1982, 40, 534–535. [Google Scholar] [CrossRef]
- Van Driel, H.M. Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-µm picosecond laser pulses. Phys. Rev. B 1987, 35, 8166–8176. [Google Scholar] [CrossRef]
- Liu, H.; Li, S.; Sun, P.; Yang, X.; Liu, D.; Ji, Y.; Zhang, F.; Chen, D.; Cui, Y. Study on characterization method of optical constants of germanium thin films from absorption to transparent region. Mater. Sci. Semicond. Process 2018, 83, 58–62. [Google Scholar] [CrossRef]
- Kittel, C. Introduction to Solid State Physics, 6th ed.; John Wiley & Sons: New York, NY, USA, 1986. [Google Scholar]
- Goh, E.S.M.; Chen, T.P.; Sun, C.Q.; Liu, Y.C. Thickness effect on the band gap and optical properties of germanium thin films. J. Appl. Phys. 2010, 107, 024305. [Google Scholar] [CrossRef]
- Garcia, H.; Avanaki, K.N. Direct and indirect two-photon absorption in Ge within the effective mass approximation. Appl. Phys. Lett. 2012, 100, 131105. [Google Scholar] [CrossRef]
- Rämer, A.; Osmani, O.; Rethfeld, B. Laser damage in silicon: Energy absorption, relaxation, and transport. J. Appl. Phys. 2014, 116, 053508. [Google Scholar] [CrossRef]
- Chen, H.S.; Turnbull, D. Specific heat and heat of crystallization of amorphous germanium. J. Appl. Phys. 1969, 40, 4214–4215. [Google Scholar] [CrossRef]
- Goldschmidt, D. Amorphous germanium as a medium temperature solar selective absorber. Thin Solid Films 1982, 90, 139–143. [Google Scholar] [CrossRef]
- Szyszko, W.; Vega, F.; Afonso, C.N. Shifting of the thermal properties of amorphous germanium films upon relaxation and crystallization. Appl. Phys. A 1995, 61, 141–147. [Google Scholar] [CrossRef]
- Mirza, I.; Bulgakov, A.V.; Sopha, H.; Starinskiy, S.V.; Turčičová, H.; Novák, O.; Mužík, J.; Smrž, M.; Volodin, V.A.; Mocek, T.; et al. Non-thermal regimes of laser annealing of semiconductor nanostructures: Crystallization without melting. Front. Nanotechnol. 2023, 5, 1271832. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Bulgakov, A.V.; Bulgakova, N.M.; Beránek, J.; Zukerstein, M.; Milekhin, I.A.; Popov, A.A.; Volodin, V.A. Ultrafast Infrared Laser Crystallization of Amorphous Ge Films on Glass Substrates. Micromachines 2023, 14, 2048. https://doi.org/10.3390/mi14112048
Cheng Y, Bulgakov AV, Bulgakova NM, Beránek J, Zukerstein M, Milekhin IA, Popov AA, Volodin VA. Ultrafast Infrared Laser Crystallization of Amorphous Ge Films on Glass Substrates. Micromachines. 2023; 14(11):2048. https://doi.org/10.3390/mi14112048
Chicago/Turabian StyleCheng, Yuzhu, Alexander V. Bulgakov, Nadezhda M. Bulgakova, Jiří Beránek, Martin Zukerstein, Ilya A. Milekhin, Alexander A. Popov, and Vladimir A. Volodin. 2023. "Ultrafast Infrared Laser Crystallization of Amorphous Ge Films on Glass Substrates" Micromachines 14, no. 11: 2048. https://doi.org/10.3390/mi14112048
APA StyleCheng, Y., Bulgakov, A. V., Bulgakova, N. M., Beránek, J., Zukerstein, M., Milekhin, I. A., Popov, A. A., & Volodin, V. A. (2023). Ultrafast Infrared Laser Crystallization of Amorphous Ge Films on Glass Substrates. Micromachines, 14(11), 2048. https://doi.org/10.3390/mi14112048