Editorial for the Special Issue on Micro-Electromechanical System Inertial Devices
Conflicts of Interest
List of Contributions
- Liu, G.; Liu, Y.; Ma, X.; Wang, X.; Zheng, X.; Jin, Z. Research on a Method to Improve the Temperature Performance of an All-Silicon Accelerometer. Micromachines 2023, 14, 869. https://doi.org/10.3390/mi14040869.
- Wang, C.; Cui, Y.; Liu, Y.; Li, K.; Shen, C. High-G MEMS Accelerometer Calibration Denoising Method Based on EMD and Time-Frequency Peak Filtering. Micromachines 2023, 14, 970. https://doi.org/10.3390/mi14050970.
- Cui, M.; Chuai, S.; Huang, Y.; Liu, Y.; Li, J. Structural Design of MEMS Acceleration Sensor Based on PZT Plate Capacitance Detection. Micromachines 2023, 14, 1565. https://doi.org/10.3390/mi14081565.
- Shi, S.; Ma, L.; Kang, K.; Zhu, J.; Hu, J.; Ma, H.; Pang, Y.; Wang, Z. High-Sensitivity Piezoelectric MEMS Accelerometer for Vector Hydrophones. Micromachines 2023, 14, 1598. https://doi.org/10.3390/mi14081598.
- Liu, G.; Liu, Y.; Li, Z.; Ma, Z.; Ma, X.; Wang, X.; Zheng, X.; Jin, Z. Combined Temperature Compensation Method for Closed-Loop Microelectromechanical System Capacitive Accelerometer. Micromachines 2023, 14, 1623. https://doi.org/10.3390/mi14081623.
- Li, Z.; Cui, Y.; Gu, Y.; Wang, G.; Yang, J.; Chen, K.; Cao, H. Temperature Drift Compensation for Four-Mass Vibration MEMS Gyroscope Based on EMD and Hybrid Filtering Fusion Method. Micromachines 2023, 14, 971. https://doi.org/10.3390/mi14050971.
- Han, T.; Wang, G.; Dong, C.; Jiang, X.; Ren, M.; Zhang, Z. A Self-Oscillating Driving Circuit for Low-Q MEMS Vibratory Gyroscopes. Micromachines 2023, 14, 1057. https://doi.org/10.3390/mi14051057.
- Cui, R.; Ma, T.; Zhang, W.; Zhang, M.; Chang, L.; Wang, Z.; Xu, J.; Wei, W.; Cao, H. A New Dual-Mass MEMS Gyroscope Fault Diagnosis Platform. Micromachines 2023, 14, 1177. https://doi.org/10.3390/mi14061177.
- Li, S.; Tian, X.; Tian, S. Research on Optical Fiber Ring Resonator Q Value and Coupling Efficiency Optimization. Micromachines 2023, 14, 1680. https://doi.org/10.3390/mi14091680.
- Wu, Y.; Yuan, W.; Xue, Y.; Chang, H.; Shen, Q. Virtual Coriolis-Force-Based Mode-Matching Micromachine-Optimized Tuning Fork Gyroscope without a Quadrature-Nulling Loop. Micromachines 2023, 14, 1704. https://doi.org/10.3390/mi14091704.
- Lu, C.; Wang, S.; Shin, K.; Dong, W.; Li, W. Experimental Research of Triple Inertial Navigation System Shearer Positioning. Micromachines 2023, 14, 1474. https://doi.org/10.3390/mi14071474.
References
- de Groot, W.A.; Webster, J.R.; Felnhofer, D.; Gusev, E.P. Review of Device and Reliability Physics of Dielectrics in Electrostatically Driven MEMS Devices. IEEE Trans. Device Mater. Reliab. 2009, 9, 190–202. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, X.; Shi, Q.; He, T.; Sun, Z.; Guo, X.; Liu, W.; Sulaiman, O.B.; Dong, B.; Lee, C. Development Trends and Perspectives of Future Sensors and MEMS/NEMS. Micromachines 2020, 11, 7. [Google Scholar] [CrossRef]
- Ghazali, M.H.M.; Rahiman, W. Fuzzy-Oriented Anomaly Inspection in Unmanned Aerial Vehicle (UAV) Based on MEMS Accelerometers in Multimode Environment. IEEE Trans. Instrum. Meas. 2023, 72, 3530710. [Google Scholar] [CrossRef]
- Bhat, K.P.; Oh, K.W.; Hopkins, D.C. Feasibility of a MEMS Sensor for Gas Detection in HV Oil-Insulated Transformer. IEEE Trans. Ind. Appl. 2013, 49, 316–321. [Google Scholar] [CrossRef]
- Zhang, W.; Hao, C.; Zhang, Z.; Yang, S.; Peng, J.; Wu, B.; Xue, X.; Zang, J.; Chen, X.; Yang, H.; et al. Vector High-Resolution Marine Turbulence Sensor Based on a MEMS Bionic Cilium-Shaped Structure. IEEE Sens. J. 2021, 21, 8741–8750. [Google Scholar] [CrossRef]
- KMori; Misawa, K.; Ihida, S.; Takahashi, T.; Fujita, H.; Toshiyoshi, H. A MEMS Electrostatic Roll-Up Window Shade Array for House Energy Management System. IEEE Photonics Technol. Lett. 2016, 28, 593–596. [Google Scholar] [CrossRef]
- JBaik; Seo, S.; Lee, S.; Yang, S.; Park, S.-M. Circular Radio-Frequency Electrode with MEMS Temperature Sensors for Laparoscopic Renal Sympathetic Denervation. IEEE Trans. Biomed. Eng. 2022, 69, 256–264. [Google Scholar] [CrossRef]
- Sabato, A.; Niezrecki, C.; Fortino, G. Wireless MEMS-Based Accelerometer Sensor Boards for Structural Vibration Monitoring: A Review. IEEE Sens. J. 2017, 17, 226–235. [Google Scholar] [CrossRef]
- Marx, M.; Cuignet, X.; Nessler, S.; De Dorigo, D.; Manoli, Y. An Automatic MEMS Gyroscope Mode Matching Circuit Based on Noise Observation. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 743–747. [Google Scholar] [CrossRef]
- Morichika, S.; Sekiya, H.; Zhu, Y.; Hirano, S.; Maruyama, O. Estimation of Displacement Response in Steel Plate Girder Bridge Using a Single MEMS Accelerometer. IEEE Sens. J. 2021, 21, 8204–8208. [Google Scholar] [CrossRef]
- Perrier, T.; Levy, R.; Bourgeteau-Verlhac, B.; Kayser, P.; Moulin, J.; Paquay, S. Optimization of an MEMS Magnetic Thin Film Vibrating Magnetometer. IEEE Trans. Magn. 2017, 53, 4000705. [Google Scholar] [CrossRef]
- Lu, J.; Ye, L.; Zhang, J.; Luo, W.; Liu, H. A New Calibration Method of MEMS IMU Plus FOG IMU. IEEE Sens. J. 2022, 22, 8728–8737. [Google Scholar] [CrossRef]
- Zhang, H.; Sobreviela, G.; Pandit, M.; Chen, D.; Sun, J.; Parajuli, M.; Zhao, C.; Seshia, A.A. A Low-Noise High-Order Mode-Localized MEMS Accelerometer. J. Microelectromechanical Syst. 2021, 30, 178–180. [Google Scholar] [CrossRef]
- Ren, J.; Zhou, T.; Zhou, Y.; Li, Y.; Su, Y. An In-Run Automatic Mode-Matching Method with Amplitude Correction and Phase Compensation for MEMS Disk Resonator Gyroscope. IEEE Trans. Instrum. Meas. 2023, 72, 7505911. [Google Scholar] [CrossRef]
- Liu, S.Q.; Zhang, J.C.; Li, G.Z.; Zhu, R. A Wearable Flow-MIMU Device for Monitoring Human Dynamic Motion. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 637–645. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, Q.; Cui, J. Effect of Proton Radiation on Mechanical Structure of Silicon MEMS Inertial Devices. IEEE Trans. Electron Devices 2022, 69, 5155–5161. [Google Scholar] [CrossRef]
- NASA Jet Propulsion Laboratory. Mars Science Laboratory (Curiosity Rover). 2021. Available online: https://mars.jpl.nasa.gov/msl/ (accessed on 6 November 2023).
- Woods Hole Oceanographic Institution. REMUS. 2021. Available online: https://www.whoi.edu/what-we-do/explore/vehicles/remus/ (accessed on 7 December 2021).
- Boston Dynamics. Spot. 2021. Available online: https://www.bostondynamics.com/spot (accessed on 23 May 2021).
- Tesla. Autopilot. 2021. Available online: https://www.tesla.com/autopilot (accessed on 28 June 2021).
- Fitbit. Fitbit. 2021. Available online: https://www.fitbit.com/global/us/home (accessed on 12 August 2021).
- Dean, R.N.; Castro, S.T.; Flowers, G.T.; Roth, G.; Ahmed, A.; Hodel, A.S.; Grantham, B.E.; Bittle, D.A.; Brunsch, J.P. A Characterization of the Performance of a MEMS Gyroscope in Acoustically Harsh Environments. IEEE Trans. Ind. Electron. 2011, 58, 2591–2596. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, H. Editorial for the Special Issue on Micro-Electromechanical System Inertial Devices. Micromachines 2023, 14, 2134. https://doi.org/10.3390/mi14122134
Cao H. Editorial for the Special Issue on Micro-Electromechanical System Inertial Devices. Micromachines. 2023; 14(12):2134. https://doi.org/10.3390/mi14122134
Chicago/Turabian StyleCao, Huiliang. 2023. "Editorial for the Special Issue on Micro-Electromechanical System Inertial Devices" Micromachines 14, no. 12: 2134. https://doi.org/10.3390/mi14122134
APA StyleCao, H. (2023). Editorial for the Special Issue on Micro-Electromechanical System Inertial Devices. Micromachines, 14(12), 2134. https://doi.org/10.3390/mi14122134