A Microstrip Antenna Using I-Shaped Metamaterial Superstrate with Enhanced Gain for Multiband Wireless Systems
Abstract
:1. Introduction
2. Design and Geometry of the I-Shaped MTM based MPA
2.1. Geometry of the I-Shaped MTM Superstrate
2.2. Design and Geometry of Rectangular MPA Using I-Shaped MTM Superstrate
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FCC. The First Report and Order Regarding Ultra-Wideband Transmission System; FCC 02-48, ET Docket 98-153; FCC: Washington, DC, USA, 2002. [Google Scholar]
- Faruque, M.R.I.; Hussein, M.I.; Islam, M.T. Low specific absorption rate microstrip patch antenna for cellular phone applications. IET Microw. Ant. Propag. 2015, 9, 1540–1546. [Google Scholar] [CrossRef]
- Li, L.; Chen, X.; Zhang, Y.; Han, L.; Zhang, W. Modeling and design of microstrip patch antenna-in-package for integrating the RFIC in the inner cavity. IEEE Ant. Wirel. Propag. Lett. 2014, 13, 559–562. [Google Scholar] [CrossRef]
- Arora, C.; Pattnaik, S.S.; Baral, R.N. Performance enhancement of patch antenna array for 5.8 GHz Wi-Max application using metamaterial inspired technique. Int. J. Electron. Commun. 2017, 79, 124–131. [Google Scholar] [CrossRef]
- Sohrabi, A.; Dashti, H.; Ahmadi-Shokouh, J. Design and analysis of a broadband electrically small antenna using characteristic mode theory. AEU Int. J. Electron. Commun. 2020, 113, 15299. [Google Scholar] [CrossRef]
- Kumar, P.; Ali, T.; Pai, M. Electromagnetic metamaterials: A new paradigm of antenna design. IEEE Access 2021, 9, 18722–18751. [Google Scholar] [CrossRef]
- Ali, A.; Mitra, A.; Aissa, B. Metamaterials and metasurfaces: A review from the perspectives of materials, mechanisms and advanced metadevices. Nanomaterials 2022, 12, 1027. [Google Scholar]
- Kowerdziej, R.; Jaroszewicz, L. Tunable dual-band liquid crystal based near-infrared perfect metamaterial absorber with high-loss metal. Liq. Cryst. 2019, 46, 1568–1573. [Google Scholar] [CrossRef]
- Gorkunov, M.; Miroshnichenko, A.; Kivshar, Y. Metamaterials Tunable with Liquid Crystals. In Nonlinear, Tunable and Active Metamaterials; Shadrivov, I.V., Lapine, M., Kivshar, Y.S., Eds.; Springer: Cham, Switzerland, 2014; Volume 200, pp. 237–253. [Google Scholar]
- Kowerdziej, R.; Stańczyk, T.; Parka, J. Electromagnetic simulations of tunable terahertz metamaterial infiltrated with highly birefringent nematic liquid crystal. Liq. Cryst. 2015, 42, 430–434. [Google Scholar]
- Zhou, S.; Shen, Z.; Kang, R.; Ge, S.; Hu, W. Liquid Crystal Tunable Dielectric Metamaterial Absorber in the Terahertz Range. Appl. Sci. 2018, 8, 2211. [Google Scholar]
- Wajid, A.; Ahmad, A.; Ullah, S.; Choi, D.Y.; Islam, F.U. Performance analysis of wearable dual-band patch antenna based on EBG and SRR surfaces. Sensors 2022, 22, 5208. [Google Scholar] [CrossRef]
- Boutayeb, H.; Denidni, T.A. Gain enhancement of a microstrip patch antenna using cylindrical electromagnetic crystal substrate. IEEE Trans. Ant. Propag. 2007, 55, 3140–3145. [Google Scholar]
- Weng, Z.B.; Jiao, Y.C.; Zhang, F.S.; Song, Y.; Zhao, G. A multi-band patch antenna on metamaterial substrate. J. Electromagn. App. 2008, 22, 445–452. [Google Scholar]
- Zhang, Y.; Hong, W.; Yu, C.; Kuai, Z.Q.; Don, Y.D.; Zhou, J.Y. Planar ultra-wideband Antennas with multiple notched bands based on etched slots on the patch and/or split ring resonators on the feed line. IEEE Trans. Ant. Propag. 2008, 56, 3063–3068. [Google Scholar] [CrossRef]
- Pattnaik, S.S.; Joshi, J.G.; Devi, S.; Lohokare, M.R. Electrically Small rectangular microstrip patch antenna loaded with metamaterial. In Proceedings of the 9th International Symposium on Antennas, Propagation and EM Theory, Guangzhou, China, 29 November–2 December 2010; pp. 247–250. [Google Scholar]
- Singh, N.; Singh, S. Effect of different structural parameters on Bandwidth and Resonant frequency of Novel MTM. In Proceedings of the 9th International Symposium on Antennas, Propagation and EM Theory, Guangzhou, China, 29 November–2 December 2010; pp. 1140–1143. [Google Scholar]
- Tang, M.C.; Xiao, S.; Deng, T.; Wang, D.; Guan, J.; Wang, B.; Ge, G.D. Compact UWB antenna with multiple band-notches for WiMAX and WLAN. IEEE Trans. Ant. Propag. 2011, 59, 1372–1376. [Google Scholar] [CrossRef]
- Patel, S.K.; Kosta, Y.P. Metamaterial superstrate-loaded meandered microstrip-based radiating structure for bandwidth enhancement. J. Mod. Opt. 2014, 61, 923–930. [Google Scholar]
- Alam, T.; Samsuzzaman, M.; Faruque, M.R.I.; Islam, M.T. A metamaterial unit cell inspired antenna for mobile wireless applications. Microw. Opt. Tech. Lett. 2016, 58, 263–267. [Google Scholar] [CrossRef]
- Rajkumar, R.; Usha Kiran, K. A metamaterial inspired compact open split ring resonator antenna for multiband operation. Wirel. Pers. Commun. 2017, 97, 951–965. [Google Scholar]
- Saravanan, M.; Umarani, S.M. Gain enhancement of patch antenna integrated with metamaterial inspired superstrate. J. Electr. Syst. Inf. Technol. 2018, 5, 263–270. [Google Scholar]
- Hasan, M.M.; Rahman, M.; Faruque, M.R.I.; Islam, M.T.; Khandaker, M.U. Electrically compact SRR-loaded metamaterial inspired quad band antenna for bluetooth/WiFi/WLAN/WiMAX system. Electronics 2019, 8, 790. [Google Scholar] [CrossRef]
- Althuwayb, A.A. Enhanced radiation gain and efficiency of a metamaterial inspired wideband microstrip antenna using substrate integrated waveguide technology for sub-6 GHz wireless communication systems. Microw. Opt. Technol. Lett. 2021, 63, 1892–1898. [Google Scholar]
- Hoque, A.; Islam, M.T.; Almutairi, A.F. Low-profile slotted metamaterial antenna based on bi slot microstrip patch for 5G application. Sensors 2020, 20, 3323. [Google Scholar]
- Pandya, A.; Upadhyaya, T.K.; Pandya, K. Design of metamaterial based multilayer antenna for navigation/WiFi/satellite applications. Prog. Electromagn. Res. M 2021, 99, 103–113. [Google Scholar] [CrossRef]
- David, R.M.; AW, M.S.; Ali, T.; Kumar, P. A multiband antenna stacked with novel metamaterial SCSRR and CSSRR for WiMAX/WLAN applications. Micromachines 2021, 12, 113. [Google Scholar]
- Patel, U.; Upadhyaya, T.; Desai, A.; Pandey, R.; Pandya, K. Dual-band compact split-ring resonator-shaped fractal antenna with defected ground plane for sub-6-GHz 5G and global system for mobile communication applications. Int. J. Commun. Syst. 2022, 35, e5105. [Google Scholar]
- Ashyap, A.Y.; Inam, M.; Kamarudin, M.R.; Dahri, M.H.; Shamsan, Z.A.; Almuhanna, K.; Alorifi, F. Multi-band metamaterial antenna for terahertz application. Comput. Mater. Contin. 2023, 74, 1765–1782. [Google Scholar] [CrossRef]
- Ajewole, B.D.; Kumar, P.; Afullo, T.J. Square SRR Metamaterial inspired Microstrip Antenna for Wireless Mobile Communication. In Proceedings of the International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems, Durban, South Africa, 5–6 August 2021; pp. 1–6. [Google Scholar]
- Al-Duhni, G.; Wongkasem, N. Metamaterial-inspired quintuple band printed patch antenna for dense communication networks. J. Electromagn. Waves Appl. 2022, 36, 2785–2803. [Google Scholar] [CrossRef]
- Ajewole, B.; Kumar, P.; Afullo, T. I-Shaped Metamaterial Using SRR for Multi-Band Wireless Communication. Crystals 2022, 12, 559. [Google Scholar] [CrossRef]
- Siddiky, A.M.; Faruque, M.R.I.; Islam, M.T.; Abdullah, S.; Khandaker, M.U. Parabolic split ring resonator (PSRR) based MNZ metamaterial with angular rotation for WiFi/WiMax/Wireless/ISM band applications. Chin. J. Phys. 2021, 71, 753–769. [Google Scholar] [CrossRef]
- Siddiky, A.M.; Faruque, M.R.I.; Islam, M.T.; Abdullah, S.; Khandaker, M.U. Inverse double-C shaped square split ring resonator based metamaterial with multi-resonant frequencies for satellite band applications. Results Phys. 2020, 19, 10454. [Google Scholar] [CrossRef]
- Mabaso, M.; Kumar, P. A dual patch antenna for Bluetooth and wireless local area networks applications. Int. J. Microw. Opt. Tech. 2018, 13, 393–400. [Google Scholar]
- Hamdan, S.; Mohamed, H.A.; Hamad, E.K. Design of High Isolation Two-Port MIMO Two-element Array Antenna Using Square Spilt-Ring Resonators for 5G Applications. Int. J. Micro. Opt. Tech. 2022, 17, 339–346. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Rao, T.; Pandey, R.; Kandu, A. Design a wideband aperture coupled stacked microstrip antenna at 28 GHz for 5G applications. Int. J. Sci. Prog. Res. 2020, 74, 61–65. [Google Scholar]
- Pragati; Tripathi, S.L.; Patre, S.R.; Singh, S.; Singh, S.P. Triple-band microstrip patch antenna with improved gain. In Proceedings of the International Conference on Emerging Trends in Electrical, Electronics and Sustainable Energy Systems, Sultanpur, India, 11–12 March 2016; pp. 1–5. [Google Scholar]
- Kaur, J.; Nitika; Panwa, R. Design and optimization of a dual-bandslotted microstrip patch antenna using differential evolution algorithm with improved cross polarization characteristics for wireless applications. J. Electromag. Waves App. 2019, 33, 1427–1442. [Google Scholar] [CrossRef]
- Kucukcan, S.; Kaya, A. Dual-band microstrip patch antenna design for Wi-Fi applications. Eur. J. Sci. Technol. 2022, 34, 661–665. [Google Scholar]
Parameter | Dimension (mm) | Parameter | Dimension (mm) |
---|---|---|---|
Wm | 70 | R3 | 2.8 |
Lm | 70 | Rt | 0.5 |
Sw | 10 | Rl | 2 |
Ls | 10 | W | 0.5 |
Rw | 1.25 | sh | 1.6 |
R1 | 9 | ch | 0.035 |
R2 | 4 | g | 0.5 |
Parameter | Dimension (mm) | Parameter | Dimension (mm) |
---|---|---|---|
24.96 | Fi | 4.36 | |
20.98 | sh | 1.6 | |
15.4 | hc | 0.035 | |
11.38 | ag | 7 | |
Wf | 3.01 |
Parameter | Value (at 5.45 GHz) | Value (at 6.07 GHz) | Value (at 7.27 GHz) | Value (at 8.29 GHz) | Value (at 10.85 GHz) | Value (at 12.38 GHz) |
---|---|---|---|---|---|---|
Dielectric constant | 4.34 | 4.33 | 4.32 | 4.31 | 4.29 | 4.28 |
Loss tangent | 0.0235 | 0.0239 | 0.0245 | 0.0248 | 0.0250 | 0.0249 |
S. No. | Mode | Resonant Frequency (Computed) | Resonant Frequency (Simulated) |
---|---|---|---|
1. | 6.043 GHz | 6.18 GHz | |
2. | 8.950 GHz | 9.09 GHz | |
3. | 12.138 GHz | 11.48 GHz |
S. No. | Frequency | Gain of the Rectangular MPA | Gain of the Proposed Antenna | Gain of the Rectangular MPA (Absolute Value) | Gain of the Proposed Antenna (Absolute Value) | Gain Enhancement |
---|---|---|---|---|---|---|
1. | 6 GHz | 1.91 dBi | 3.42 dBi | 1.55 | 2.2 | 41.94% |
2. | 6.18 GHz | 2 dBi | 4.18 dBi | 1.58 | 2.62 | 65.82% |
3. | 9.14 GHz | 0.09 dBi | 2.39 dBi | 1.02 | 1.73 | 69.6% |
4. | 11.48 GHz | 3.22 dBi | 5.63 dBi | 2.1 | 3.66 | 74.28% |
5. | 12 GHz | 2.91 dB | 5.25 dBi | 1.95 | 3.35 | 71.79% |
Antenna Parameters | Rectangular MPA | Proposed Antenna | ||||
---|---|---|---|---|---|---|
6.18 GHz | 9.14 GHz | 11.44 GHz | 6.18 GHz | 9.65 GHz | 11.5 GHz | |
Angular beamwidth (3dB) (phi = 0°) | 91.1 | 152.0 | 64.5 | 66 | 57 | 81.1 |
Angular beamwidth (3dB) (phi = 90°) | 98.0 | 74.8 | 63.1 | 43.9 | 93 | 56.3 |
Main lobe direction (phi = 0°) | 0.0 | 35 | 0.0 | 180 | 49 | 146 |
Main lobe direction (phi = 90°) | 30.8 | 42 | 54 | 168 | 127 | 51 |
Radiating efficiency (dB) | −3.670 | −5.929 | −5.042 | −3.894 | −3.196 | −2.176 |
Total efficiency (dB) | −4.074 | −9.530 | −5.352 | −4.059 | −3.199 | −2.168 |
Maximum gain (dB) | 2.000 | 0.098 | 3.229 | 4.192 | 2.388 | 5.679 |
Maximum directivity (dB) | 5.671 | 6.020 | 8.260 | 8.005 | 5.697 | 7.073 |
Ref. | Dimension | Resonance Frequency | Substrate | Gain (dBi) | Gain Enhancement | Remarks |
---|---|---|---|---|---|---|
Boutayeb and Denidni [13] | 2.6 GHz | Taconic | 9.33 | 94.7% | Single-band | |
Weng et al. [14] | 165 mm | 1.66 GHz | 5.8 | -- | Not a low-cost FR-4 | |
2.02 GHz | 0.8 | |||||
2.40 GHz | 4.2 | |||||
2.48 GHz | 3.6 | |||||
2.77 GHz | 8.2 | |||||
Patel and Kosta [19] | -- | 3.51 GHz | FR-4 | -- | -- | Gain not reported |
4.86 GHz | ||||||
7.8 GHz | ||||||
Alam et al. [20] | 48 mm | 1.9 GHz | Rogers RT5870 | 1.64 | -- | Low gain |
2.45 GHz | 2.07 | |||||
5 GHz | 4.06 | |||||
Rajkumar and Usha Kiran [21] | 16.08 mm | 2.4 GHz | FR-4 | 0.37 | -- | Low gain |
4.1 GHz | 1.61 | |||||
5.2 GHz | 1.88 | |||||
Saravanan and Umarani [22] | 61.25 mm | 2.4 GHz | FR4 Metamaterial | 6.56 | 30.17% | Single-band, Low gain enhancement |
Hasan et al. [23] | 30 mm | 2.47 GHz | FR-4 | 1.88 | -- | Dual-band, low gain |
3.62 GHz | 1.35 | |||||
Pandya et al. [26] | 35 mm | 1.13 GHz | FR-4 | 3.73 | -- | Low gain for two bands |
2.47 GHz | 6.18 | |||||
2.74 GHz | 1.35 | |||||
Patel et al. [28] | 56 mm | 1.75–2.0 GHz | FR-4 | 1.5 | -- | Dual-band, low gain |
3.01–4.18 GHz | 2.05 | |||||
Ajewole et al. [30] | 21.4 mm | 5.8 GHz | FR-4 | 5.27, 4.04 | 32.67% | Single band, low gain enhancement |
Rao et al. [38] | 12 mm | 28 GHz | Roger RT/Duroid 6006 and Roger RT/ Duroid 5880 | 6.36 (5) | 37.02% | Single-band, low gain enhancement |
Pragati et al. [39] | 32 mm | 2.45 GHz | FR4 | 2.76 (2.4) | 8.62% | Low gain, Low gain enhancement |
3.5 GHz | −7.4 (−8.2) | 20% | ||||
4.65 GHz | 3.68 (1.4) | 68.84% | ||||
Kaur et al. [40] | 70 mm | 2.53 GHz | FR4 | 3.64 | -- | Dual band, low gain |
5.77 GHz | 3.84 | |||||
Kucukcan and Kaya [41] | 50 mm | 2.41 GHz | FR4 | 0.29 | -- | Low gain |
5.8 GHz | 1.17 | |||||
Proposed antenna | 70 mm | 6.18 GHz | FR-4 | 4.19 | 65.82% | Triple-band, low-cost FR4, high gain, high gain enhancement |
9.65 GHz | 2.4 | 69.6% | ||||
11.5 GHz | 5.68 | 74.28% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajewole, B.; Kumar, P.; Afullo, T. A Microstrip Antenna Using I-Shaped Metamaterial Superstrate with Enhanced Gain for Multiband Wireless Systems. Micromachines 2023, 14, 412. https://doi.org/10.3390/mi14020412
Ajewole B, Kumar P, Afullo T. A Microstrip Antenna Using I-Shaped Metamaterial Superstrate with Enhanced Gain for Multiband Wireless Systems. Micromachines. 2023; 14(2):412. https://doi.org/10.3390/mi14020412
Chicago/Turabian StyleAjewole, Bukola, Pradeep Kumar, and Thomas Afullo. 2023. "A Microstrip Antenna Using I-Shaped Metamaterial Superstrate with Enhanced Gain for Multiband Wireless Systems" Micromachines 14, no. 2: 412. https://doi.org/10.3390/mi14020412
APA StyleAjewole, B., Kumar, P., & Afullo, T. (2023). A Microstrip Antenna Using I-Shaped Metamaterial Superstrate with Enhanced Gain for Multiband Wireless Systems. Micromachines, 14(2), 412. https://doi.org/10.3390/mi14020412