Investigation of the Effect of Dispersion Medium Parameters on the Aggregative Stability of Selenium Nanoparticles Stabilized with Catamine AB
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Se NPs Stabilized with Alkyldimethylbenzylammonium Chloride
2.2. Methods of Investigation of Se NPs Stabilized with Alkyldimethylbenzylammonium Chloride (Catamine AB)
2.3. Optimization of the Method of Synthesis of Se NPs Stabilized with Alkyldimethylbenzylammonium Chloride (Catamine AB)
2.4. Investigation of the Effect of the Active Acidity of the Medium on the Stability of Samples of Se NPs
2.5. Investigation of the Effect of Ionic Force on the Stability of Samples of Se NPs
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Y.; Su, E.; Ren, J.; Qu, X. The Recent Biological Applications of Selenium-Based Nanomaterials. Nano Today 2021, 38, 101205. [Google Scholar] [CrossRef]
- Sun, H.; Jiao, R.; An, G.; Xu, H.; Wang, D. Influence of Particle Size on the Aggregation Behavior of Nanoparticles: Role of Structural Hydration Layer. J. Environ. Sci. 2021, 103, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Barvinchenko, V.N.; Lipkovskaya, N.A. The Effect of a Cationic Gemini Surfactant, Ethonium, on the Physicochemical Properties of Quercetin in Solutions and on the Surface of Highly Dispersed Silica. Colloid J. 2018, 80, 43–48. [Google Scholar] [CrossRef]
- Picca, R.A.; Sportelli, M.C.; Lopetuso, R.; Cioffi, N. Electrosynthesis of ZnO Nanomaterials in Aqueous Medium with CTAB Cationic Stabilizer. J. Sol.-Gel. Sci. Technol. 2017, 81, 338–345. [Google Scholar] [CrossRef]
- Riedesel, S.; Kaur, R.; Bakshi, M.S. Distinguishing Nanoparticle–Nanoparticle Interactions between Gold and Silver Nanoparticles Controlled by Gemini Surfactants: Stability of Nanocolloids. J. Phys. Chem. C 2021, 125, 5399–5411. [Google Scholar] [CrossRef]
- Juhász, Á.; Seres, L.; Varga, N.; Ungor, D.; Wojnicki, M.; Csapó, E. Detailed Calorimetric Analysis of Mixed Micelle Formation from Aqueous Binary Surfactants for Design of Nanoscale Drug Carriers. Nanomaterials 2021, 11, 3288. [Google Scholar] [CrossRef]
- Xu, D.; Yang, L.; Wang, Y.; Wang, G.; Rensing, C.; Zheng, S. Proteins Enriched in Charged Amino Acids Control the Formation and Stabilization of Selenium Nanoparticles in Comamonas Testosteroni S44. Sci. Rep. 2018, 8, 4766. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, Y.; Zhou, Y.; Li, W.; Zheng, W. Modification and Modulation of Saccharides on Elemental Selenium Nanoparticles in Liquid Phase. Mater. Lett. 2008, 62, 2311–2314. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, H.; Wang, R.; Duan, M. Fabricating Ag@MOF-5 Nanoplates by the Template of MOF-5 and Evaluating Its Antibacterial Activity. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127093. [Google Scholar] [CrossRef]
- Shanmugham, V.; Subban, R. Capsanthin from Capsicum Annum Fruits Exerts Anti-glaucoma, Antioxidant, Anti-inflammatory Activity, and Corneal Pro-inflammatory Cytokine Gene Expression in a Benzalkonium Chloride-induced Rat Dry Eye Model. J. Food Biochem. 2022, 46, e14352. [Google Scholar] [CrossRef]
- Hedengran, A.; Begun, X.; Müllertz, O.; Mouhammad, Z.; Vohra, R.; Bair, J.; Dartt, D.A.; Cvenkel, B.; Heegaard, S.; Petrovski, G.; et al. Benzalkonium Chloride-Preserved Anti-Glaucomatous Eye Drops and Their Effect on Human Conjunctival Goblet Cells in Vitro. Biomed. Hub. 2021, 6, 69–76. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho Bernardo, W.L.; Boriollo, M.F.G.; Tonon, C.C.; da Silva, J.J.; Cruz, F.M.; Martins, A.L.; Höfling, J.F.; Spolidorio, D.M.P. Antimicrobial Effects of Silver Nanoparticles and Extracts of Syzygium Cumini Flowers and Seeds: Periodontal, Cariogenic and Opportunistic Pathogens. Arch. Oral Biol. 2021, 125, 105101. [Google Scholar] [CrossRef] [PubMed]
- Romero, G.B.; Keck, C.M.; Müller, R.H.; Bou-Chacra, N.A. Development of Cationic Nanocrystals for Ocular Delivery. Eur. J. Pharm. Biopharm. 2016, 107, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Bashir, M.; Ali, S.; Farrukh, M.A. Green Synthesis of Fe2O3 Nanoparticles from Orange Peel Extract and a Study of Its Antibacterial Activity. J. Korean Phys. Soc. 2020, 76, 848–854. [Google Scholar] [CrossRef]
- Caglayan, M.G.; Kasap, E.; Cetin, D.; Suludere, Z.; Tamer, U. Fabrication of SERS Active Gold Nanorods Using Benzalkonium Chloride, and Their Application to an Immunoassay for Potato Virus X. Microchim. Acta 2017, 184, 1059–1067. [Google Scholar] [CrossRef]
- Abdul-Moqueet, M.M.; Tovias, L.; Lopez, P.; Mayer, K.M. Synthesis and Bioconjugation of Alkanethiol-Stabilized Gold Bipyramid Nanoparticles. Nanotechnology 2021, 32, 225601. [Google Scholar] [CrossRef]
- Ansari, S.A.; Alshanberi, A.M. Clinical Application of Silver Nanoparticles Coated by Benzalkonium Chloride. Coatings 2021, 11, 1382. [Google Scholar] [CrossRef]
- Brumovský, M.; Micić, V.; Oborná, J.; Filip, J.; Hofmann, T.; Tunega, D. Iron Nitride Nanoparticles for Rapid Dechlorination of Mixed Chlorinated Ethene Contamination. J. Hazard. Mater. 2023, 442, 129988. [Google Scholar] [CrossRef]
- Dement’eva, O.V.; Frolova, L.V.; Rudoy, V.M.; Kuznetsov, Y.I. Sol–Gel Synthesis of Silica Containers Using a Corrosion Inhibitor, Catamine AB, as a Templating Agent. Colloid J. 2016, 78, 596–601. [Google Scholar] [CrossRef]
- Ozcelikay, G.; Dogan-Topal, B.; Ozkan, S.A. An Electrochemical Sensor Based on Silver Nanoparticles-Benzalkonium Chloride for the Voltammetric Determination of Antiviral Drug Tenofovir. Electroanalysis 2018, 30, 943–954. [Google Scholar] [CrossRef]
- Bjørklund, G.; Shanaida, M.; Lysiuk, R.; Antonyak, H.; Klishch, I.; Shanaida, V.; Peana, M. Selenium: An Antioxidant with a Critical Role in Anti-Aging. Molecules 2022, 27, 6613. [Google Scholar] [CrossRef] [PubMed]
- Ozturk Kurt, B.; Ozdemir, S. Selenium in Food Chain in Relation to Human and Animal Nutrition and Health; Springer: Berlin/Heidelberg, Germany, 2022; pp. 383–436. ISBN 9783031070631. [Google Scholar]
- Reich, H.J.; Hondal, R.J. Why Nature Chose Selenium. ACS Chem. Biol. 2016, 11, 821–841. [Google Scholar] [CrossRef] [PubMed]
- Garza-García, J.J.O.; Hernández-Díaz, J.A.; Zamudio-Ojeda, A.; León-Morales, J.M.; Guerrero-Guzmán, A.; Sánchez-Chiprés, D.R.; López-Velázquez, J.C.; García-Morales, S. The Role of Selenium Nanoparticles in Agriculture and Food Technology. Biol. Trace Elem. Res. 2022, 200, 2528–2548. [Google Scholar] [CrossRef] [PubMed]
- Ferro, C.; Florindo, H.F.; Santos, H.A. Selenium Nanoparticles for Biomedical Applications: From Development and Characterization to Therapeutics. Adv. Healthc. Mater. 2021, 10, 2100598. [Google Scholar] [CrossRef] [PubMed]
- Alfthan, G.; Eurola, M.; Ekholm, P.; Venäläinen, E.-R.; Root, T.; Korkalainen, K.; Hartikainen, H.; Salminen, P.; Hietaniemi, V.; Aspila, P.; et al. Effects of Nationwide Addition of Selenium to Fertilizers on Foods, and Animal and Human Health in Finland: From Deficiency to Optimal Selenium Status of the Population. J. Trace Elem. Med. Biol. 2015, 31, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Blinov, A.V.; Kostenko, K.V.; Gvozdenko, A.A.; Maglakelidze, D.G.; Golik, A.B.; Nagdalian, A.A.; Statsenko, E.N.; Nikulnikova, N.N.; Remizov, D.M.; Verevkina, M.N.; et al. Study of Stabilization of Selenium Nanoparticles by Polysaccharides. J. Hyg. Eng. Des. 2021, 34, 209–216. [Google Scholar]
- Shurygina, I.A.; Shurygin, M.G. Use of Nanoselenium in Chemotherapy Drug Delivery Systems. Nanotechnol. Russ. 2020, 15, 679–685. [Google Scholar] [CrossRef]
- Hu, T.; Liang, Y.; Zhao, G.; Wu, W.; Li, H.; Guo, Y. Selenium Biofortification and Antioxidant Activity in Cordyceps Militaris Supplied with Selenate, Selenite, or Selenomethionine. Biol. Trace Elem. Res. 2019, 187, 553–561. [Google Scholar] [CrossRef]
- Kumar, A.; Prasad, K.S. Role of Nano-Selenium in Health and Environment. J. Biotechnol. 2021, 325, 152–163. [Google Scholar] [CrossRef]
- Hosnedlova, B.; Kepinska, M.; Skalickova, S.; Fernandez, C.; Ruttkay-Nedecky, B.; Peng, Q.; Baron, M.; Melcova, M.; Opatrilova, R.; Zidkova, J.; et al. Nano-Selenium and Its Nanomedicine Applications: A Critical Review. Int. J. Nanomed. 2018, 13, 2107–2128. [Google Scholar] [CrossRef]
- Kalinin, S.V.; Ophus, C.; Voyles, P.M.; Erni, R.; Kepaptsoglou, D.; Grillo, V.; Lupini, A.R.; Oxley, M.P.; Schwenker, E.; Chan, M.K.Y.; et al. Machine Learning in Scanning Transmission Electron Microscopy. Nat. Rev. Methods Prim. 2022, 2, 11. [Google Scholar] [CrossRef]
- Lee, J.; He, S.; Song, G.; Hogan, C.J. Size Distribution Monitoring for Chemical Mechanical Polishing Slurries: An Intercomparison of Electron Microscopy, Dynamic Light Scattering, and Differential Mobility Analysis. Powder Technol. 2022, 396, 395–405. [Google Scholar] [CrossRef]
- Mohammadi-Jam, S.; Waters, K.E.; Greenwood, R.W. A Review of Zeta Potential Measurements Using Electroacoustics. Adv. Colloid Interface Sci. 2022, 309, 102778. [Google Scholar] [CrossRef]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in Vegetation Remote Sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Salim, E.; Ali Hassan, R.R. Alkyl Dimethyl Benzyl Ammonium Chloride as a New Cleaner for Washing Treatments for Historical Printed Paper. Pigment. Resin Technol. 2022. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Blinov, A.V.; Serov, A.V.; Gvozdenko, A.A.; Kravtsov, A.A.; Nagdalian, A.A.; Raffa, V.V.; Maglakelidze, D.G.; Blinova, A.A.; Kobina, A.V.; et al. Effect of Selenium Nanoparticles on Germination of Hordéum Vulgáre Barley Seeds. Coatings 2021, 11, 862. [Google Scholar] [CrossRef]
- Guleria, A.; Baby, C.M.; Tomy, A.; Maurya, D.K.; Neogy, S.; Debnath, A.K.; Adhikari, S. Size Tuning, Phase Stabilization, and Anticancer Efficacy of Amorphous Selenium Nanoparticles: Effect of Ion-Pair Interaction, −OH Functionalization, and Reuse of RTILs as Host Matrix. J. Phys. Chem. C 2021, 125, 13933–13945. [Google Scholar] [CrossRef]
- Song, X.; Chen, Y.; Sun, H.; Liu, X.; Leng, X. Physicochemical Stability and Functional Properties of Selenium Nanoparticles Stabilized by Chitosan, Carrageenan, and Gum Arabic. Carbohydr. Polym. 2021, 255, 117379. [Google Scholar] [CrossRef]
- Gao, X.; Ren, K.; Zhu, Z.; Zhang, J.; Li, S.; Wang, J.; Xu, Y. Specific Ion Effects: The Role of Anions in the Aggregation of Permanently Charged Clay Mineral Particles. J. Soils Sediments 2023, 23, 263–272. [Google Scholar] [CrossRef]
- Pal, P.; Malhotra, M. Emerging Technologies for Selenium Separation and Recovery from Aqueous Systems: A Review for Sustainable Management Strategy. Can. J. Chem. Eng. 2022. [Google Scholar] [CrossRef]
- Li, C.; Hassan, A.; Palmai, M.; Snee, P.; Baveye, P.C.; Darnault, C.J.G. Colloidal Stability and Aggregation Kinetics of Nanocrystal CdSe/ZnS Quantum Dots in Aqueous Systems: Effects of Ionic Strength, Electrolyte Type, and Natural Organic Matter. SN Appl. Sci. 2022, 4, 101. [Google Scholar] [CrossRef]
Substance | Parameter Designation | Variable Variation Levels (mg/cm3) | ||
---|---|---|---|---|
C (H2SeO3), mg/cm3 | a | 0.48 | 3.8 | 30.4 |
C (catamine AB), mg/cm3 | b | 0.65 | 5.2 | 41.6 |
C (ascorbic acid), mg/cm3 | c | 5.83 | 46.6 | 372.8 |
Experiment No. | a (mg/cm3) | b (mg/cm3) | c (mg/cm3) |
---|---|---|---|
1 | 0.475 | 0.65 | 5.83 |
2 | 0.475 | 5.2 | 46.6 |
3 | 0.475 | 46.6 | 372.8 |
4 | 3.8 | 0.65 | 46.6 |
5 | 3.8 | 5.2 | 372.8 |
6 | 3.8 | 46.6 | 5.83 |
7 | 30.4 | 0.65 | 372.8 |
8 | 30.4 | 5.2 | 5.83 |
9 | 30.4 | 46.6 | 46.6 |
NaOH x cm3 | pH | NaOH x cm3 | pH |
---|---|---|---|
0 | 1.81 | 60 | 7.96 |
10 | 2.21 | 70 | 9.15 |
20 | 3.29 | 80 | 10.38 |
30 | 4.56 | 90 | 11.58 |
40 | 5.72 | 100 | 11.98 |
50 | 6.8 |
Names of Substances | Concentration of the Substance | ||||
---|---|---|---|---|---|
0.1 M | 0.25 M | 0.5 M | 0.75 M | 1 M | |
Weight, g | |||||
NaCl | 0.029 | 0.073 | 0.146 | 0.219 | 0.29 |
Na2SO4 | 0.071 | 0.178 | 0.355 | 0.53 | 0.71 |
K3PO4 | 0.082 | 0.205 | 0.41 | 0.615 | 0.82 |
FeCl3 | 0.08 | 0.203 | 0.406 | 0.609 | 0.812 |
BaCl2 | 0.103 | 0.257 | 0.514 | 0.77 | 1.03 |
Experiment No. | Parameters | |
---|---|---|
r, nm | ζ-Potential, mV | |
1 | 20.42 | +32.02 |
2 | 25.16 | +16.5 |
3 | 209.81 | −62.44 |
4 | 18.41 | +40.34 |
5 | 36.78 | +11.59 |
6 | 23.15 | +9.61 |
7 | 25.02 | +13.72 |
8 | 17.32 | −2.25 |
9 | 19.79 | +1.92 |
Model | E, kcal/mol | HOMO, eV | LUMO, eV | η, eV |
---|---|---|---|---|
Catamine AB | −877.734 | −0.010 | 0.048 | 0.029 |
Catamine AB + Se | −12,869.482 | −0.032 | −0.027 | 0.003 |
Se | −11,991.801 | −0.141 | −0.042 | 0.050 |
Selenous Acid | Catamine AB | Ascorbic Acid | Positive Sol of Se NPs | Negative Sol of Se NPs | |||||
---|---|---|---|---|---|---|---|---|---|
Band, cm−1 | Bond | Band, cm−1 | Bond | Band, cm−1 | Bond | Band, cm−1 | Bond | Band, cm−1 | Bond |
417 | Se | 875 | CH3 | 450 | CH2 | 659 | Se | 668 | Se |
467 | Se | 997 | CH3 | 530 | CH2 | 708 | Se | 701 | Se |
542 | HSeO3− | 1032 | C-O | 565 | CH3 | 729 | Se | 777 | Se-O |
569 | HSeO3− | 1082 | C-O | 627 | CH3 | 781 | CH3 | 882 | CH3 |
664 | Se-O | 1126 | C=O | 680 | C-O | 831 | CH3 | 982 | CH3 |
858 | Se-O | 1159 | C=O | 756 | C-O | 876 | CH3 | 1090 | C-O |
1402 | O–H | 1203 | C=O | 868 | C-O | 926 | CH3 | 1136 | C=O |
1470 | O–H | 1219 | C=O | 988 | CH2 | 1003 | CH3 | 1142 | C=O |
- | - | 1306 | CH3 | 1028 | C-O | 1030 | C-O | 1236 | C=O |
- | - | 1377 | O–H | 1076 | C-O | 1069 | C-O | 1441 | O–H |
- | - | 1439 | O–H | 1115 | C=O | 1082 | C=O | 1630 | NH2+ |
- | - | 1630 | NH2+ | 1198 | C=O | 1140 | C=O | 1726 | C=O |
- | - | 1780 | C=O | 1230 | C=O | 1217 | C=O | - | - |
- | - | 1830 | CH2 | 1317 | O–H | 1379 | O–H | - | - |
- | - | - | - | 1391 | O–H | 1468 | O–H | - | - |
- | - | - | - | 1499 | C-C | 1483 | C-C | - | - |
- | - | - | - | 1539 | COO− | 1586 | NH2+ | - | - |
- | - | - | - | 1674 | C-C | 1634 | NH2+ | - | - |
- | - | - | - | 1753 | C=O | 1802 | C=O | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blinov, A.V.; Maglakelidze, D.G.; Rekhman, Z.A.; Yasnaya, M.A.; Gvozdenko, A.A.; Golik, A.B.; Blinova, A.A.; Kolodkin, M.A.; Alharbi, N.S.; Kadaikunnan, S.; et al. Investigation of the Effect of Dispersion Medium Parameters on the Aggregative Stability of Selenium Nanoparticles Stabilized with Catamine AB. Micromachines 2023, 14, 433. https://doi.org/10.3390/mi14020433
Blinov AV, Maglakelidze DG, Rekhman ZA, Yasnaya MA, Gvozdenko AA, Golik AB, Blinova AA, Kolodkin MA, Alharbi NS, Kadaikunnan S, et al. Investigation of the Effect of Dispersion Medium Parameters on the Aggregative Stability of Selenium Nanoparticles Stabilized with Catamine AB. Micromachines. 2023; 14(2):433. https://doi.org/10.3390/mi14020433
Chicago/Turabian StyleBlinov, Andrey V., David G. Maglakelidze, Zafar A. Rekhman, Maria A. Yasnaya, Alexey A. Gvozdenko, Alexey B. Golik, Anastasiya A. Blinova, Maxim A. Kolodkin, Naiyf S. Alharbi, Shine Kadaikunnan, and et al. 2023. "Investigation of the Effect of Dispersion Medium Parameters on the Aggregative Stability of Selenium Nanoparticles Stabilized with Catamine AB" Micromachines 14, no. 2: 433. https://doi.org/10.3390/mi14020433
APA StyleBlinov, A. V., Maglakelidze, D. G., Rekhman, Z. A., Yasnaya, M. A., Gvozdenko, A. A., Golik, A. B., Blinova, A. A., Kolodkin, M. A., Alharbi, N. S., Kadaikunnan, S., Thiruvengadam, M., Shariati, M. A., & Nagdalian, A. A. (2023). Investigation of the Effect of Dispersion Medium Parameters on the Aggregative Stability of Selenium Nanoparticles Stabilized with Catamine AB. Micromachines, 14(2), 433. https://doi.org/10.3390/mi14020433