Realizing the High Q-Factor of a CSIW Microwave Resonator Based on an MDGS for Semisolid Material Characterization
Abstract
:1. Introduction
2. CSIW Sensor Modified with the MDGS Design Configuration
2.1. Conventional CSIW Sensor
2.2. Angle between the Input and Output Ports (ABIOP)
2.3. Determination of Modes and Resonant Frequency (ABIOP Design)
2.4. MDGS CSIW Design Structure
3. Samples under Test (SUTs)
4. Fabrication and Measurement
5. Data Analysis
5.1. Repeatability of the SUTs
5.2. Semisolid SUTs
5.3. Sensitivity
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lisovsky, V.V. Automatic control of moisture in agricultural products by methods of microwave aquametry. Meas. Sci. Technol. 2007, 18, 1016. [Google Scholar] [CrossRef]
- Jonasson, S.P.; Jensen, B.S.; Johansen, T.K. Study of split-ring resonators for use on a pharmaceutical drug capsule for microwave activated drug release. In Proceedings of the 2012 42nd European Microwave Conference, Amsterdam, The Netherlands, 29 October–1 November 2012. [Google Scholar] [CrossRef]
- Tiuri, M. Microwave sensor applications in industry. In Proceedings of the 1987 17th European Microwave Conference, Rome, Italy, 7–11 September 1987. [Google Scholar]
- Al-Gburi, A.J.A.; Rahman, N.A.; Zakaria, Z.; Palandoken, M. Detection of Semi-Solid Materials Utilizing Triple-Rings CSRR Microwave Sensor. Sensors 2023, 23, 3058. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Huang, J.; Fu, L.; Chen, Y.; Gu, W.; Wu, Y. A Folded Substrate Integrated Waveguide Re-Entrant Cavity for Full Characterization of Magneto-Dielectric Powder Materials. IEEE Sens. J. 2021, 21, 10657–10666. [Google Scholar] [CrossRef]
- Al-Gburi, A.J.A.; Zakaria, Z.; Rahman, N.A.; Alam, S.; Said, M.A.M. A Compact and Low-Profile Curve-Feed Complementary Split-Ring Resonator Microwave Sensor for Solid Material Detection. Micromachines 2023, 14, 384. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Meng, Z.; Soutis, C.; Wang, P.; Gibson, A. Detection and analysis of metallic contaminants in dry foods using a microwave resonator sensor. Food Control 2022, 133, 108634. [Google Scholar] [CrossRef]
- Bobowski, J.S.; Clements, A.P. Permittivity and Conductivity Measured Using a Novel Toroidal Split-Ring Resonator. IEEE Trans. Microw. Theory Tech. 2017, 65, 2132–2138. [Google Scholar] [CrossRef]
- Yeh, C.-H.; Yang, C.-H. Material characterization for Zircaloy claddings in elevated temperatures using a laser ultrasound technique. In Proceedings of the 2012 IEEE International Ultrasonics Symposium, Dresden, Germany, 7–10 October 2012; pp. 265–268. [Google Scholar] [CrossRef]
- Allouti, N.; Chausse, P.; Aumont, C.; Isselé, H.; Vignoud, L.; Rochat, N.; Poulain, C.; Gasiglia, M.; Sourd, C.; Argoud, M.; et al. Photo-dielectric polymers material characterizations for 3D packaging applications. In Proceedings of the 2013 IEEE 15th Electronics Packaging Technology Conference (EPTC 2013), Singapore, 11–13 December 2013; pp. 27–32. [Google Scholar] [CrossRef]
- Gao, R.; Yu, W.; Deng, H.; Ku, H.-S.; Li, Z.; Wang, M.; Miao, X.; Lin, Y.; Deng, C. Epitaxial titanium nitride microwave resonators: Structural, chemical, electrical, and microwave proper-ties. Phys. Rev. Mater. 2022, 6, 036202. [Google Scholar] [CrossRef]
- Jang, C.; Park, J.-K.; Yun, G.-H.; Choi, H.H.; Lee, H.-J.; Yook, J.-G. Radio-Frequency/Microwave Gas Sensors Using Conducting Polymer. Materials 2020, 13, 2859. [Google Scholar] [CrossRef]
- Chernousov, Y.D.; Ivannikov, V.I.; Shebolaev, I.V.; Bolotov, V.A.; Tanashev, Y.Y.; Parmon, V.N. Characteristics of a chemical reactor that is a loaded microwave resonator. J. Commun. Technol. Electron. 2009, 54, 231–233. [Google Scholar] [CrossRef]
- Lodi, M.B.; Curreli, N.; Melis, A.; Garau, E.; Fanari, F.; Fedeli, A.; Randazzo, A.; Mazzarella, G.; Fanti, A. Microwave Characterization and Modeling of the Carasau Bread Doughs During Leavening. IEEE Access 2021, 9, 159833–159847. [Google Scholar] [CrossRef]
- Eremenko, Z.E.; Ganapolskii, E.M.; Vasilchenko, V.V. Exact-calculated resonator method for permittivity meas-urement of high loss liquids at millimetre wavelength. Meas. Sci. Technol. 2005, 16, 1619. [Google Scholar] [CrossRef]
- Morales-Lovera, H.-N.; Olvera-Cervantes, J.-L.; Perez-Ramos, A.-E.; Corona-Chavez, A.; Saavedra, C.E. Microstrip sensor and methodology for the determination of complex anisotropic permittivity using perturbation techniques. Sci. Rep. 2022, 12, 2205. [Google Scholar] [CrossRef] [PubMed]
- Cordoba-Erazo, M.F.; Weller, T.M. Low-cost non-contact microwave probe design for insulating materials characterization. In Proceedings of the 78th ARFTG Microwave Measurement Conference, Tempe, AZ, USA, 1–2 December 2011; pp. 1–5. [Google Scholar] [CrossRef]
- Morozov, O.G.; Nasybullin, A.R.; Danilaev, M.P.; Farkhutdinov, R.V. Sensor applications of Bragg microwave structures realized in coaxial waveguide. In Proceedings of the 2015 International Conference on Antenna Theory and Techniques (ICATT), Kharkiv, Ukraine, 21–24 April 2015; pp. 1–3. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, J.; Zhang, J.; Li, E.; Li, Y. Measurement of optical signal by Microwave Coaxial resonator. In Proceedings of the 2021 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Chongqing, China, 15–17 November 2021; pp. 130–132. [Google Scholar] [CrossRef]
- Mondal, D.; Tiwari, N.K.; Akhtar, M.J. Microwave Assisted Non-Invasive Microfluidic Biosensor for Monitoring Glucose Concentration. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Kulkarni, S.; Joshi, M.S. Design and Analysis of Shielded Vertically Stacked Ring Resonator as Complex Permittivity Sensor for Petroleum Oils. IEEE Trans. Microw. Theory Tech. 2015, 63, 2411–2417. [Google Scholar] [CrossRef]
- Hamzah, H.; Abduljabar, A.; Lees, J.; Porch, A. A compact microwave microfluidic sensor using a Re-entrant cavity. Sensors 2018, 18, 910. [Google Scholar] [CrossRef]
- Ye, W.; Zhao, W.-S.; Wang, J.; Wang, D.-W.; Wang, G. A Split-Ring Resonator-Based Planar Microwave Sensor for Microfluidic Applications. In Proceedings of the 2022 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), Suzhou, China, 16–18 May 2022; pp. 34–36. [Google Scholar] [CrossRef]
- Mukherjee, S.; Shi, X.; Udpa, L.; Udpa, S.; Deng, Y.; Chahal, P. Design of a Split-Ring Resonator Sensor for Near-Field Microwave Imaging. IEEE Sens. J. 2018, 18, 7066–7076. [Google Scholar] [CrossRef]
- Kundal, S.; Khandelwal, A. Highly sensitive ring resonator based refractive index sensor for label free biosensing applications. In Proceedings of the 2022 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Turin, Italy, 12–16 September 2022; pp. 157–158. [Google Scholar] [CrossRef]
- Bari, R.T.B.; Haque, E.; Rahman, T.; Faruque, O. Improved Design of a Ring Resonator Based Notch Filter with High Quality Factor and Sensitivity. In Proceedings of the 2022 IEEE IAS Global Conference on Emerging Technologies (GlobConET), Arad, Romania, 20–22 May 2022; pp. 406–410. [Google Scholar] [CrossRef]
- Abdolrazzaghi, M.; Daneshmand, M.; Iyer, A.K. Strongly enhanced sensitivity in planar microwave sensors based on metamaterial coupling. IEEE Trans. Microw. Theory Tech. 2018, 66, 1843–1855. [Google Scholar] [CrossRef]
- Abdolrazzaghi, M.; Katchinskiy, N.; Elezzabi, A.Y.; Light, P.E.; Daneshmand, M. Noninvasive glucose sensing in aqueous solutions using an active split-ring resonator. IEEE Sens. J. 2021, 21, 18742–18755. [Google Scholar] [CrossRef]
- Chudpooti, N.; Silavwe, E.; Akkaraekthalin, P.; Robertson, I.D.; Somjit, N. Nano-Fluidic Millimeter-Wave Lab-on-a-Waveguide Sensor for Liquid-Mixture Characterization. IEEE Sens. J. 2018, 18, 157–164. [Google Scholar] [CrossRef]
- Bahar, A.A.M.; Zakaria, Z.; Ab Rashid, S.R.; Isa, A.A.M.; Alahnomi, R.A. Dielectric analysis of liquid solvents using microwave resonator sensor for high efficiency measurement. Microw. Opt. Technol. Lett. 2017, 59, 367–371. [Google Scholar] [CrossRef]
- Bozzi, M.; Georgiadis, A.; Wu, K. Review of substrate integrated waveguide (SIW) circuits and antennas. IET Microw. Antennas Propag. 2011, 5, 909–920. [Google Scholar] [CrossRef]
- Saeed, K.; Pollard, R.D.; Hunter, I.C. Substrate integrated waveguide cavity resonators for complex permittivity characterization of materials. IEEE Trans. Microw. Theory Tech. 2008, 56, 2340–2347. [Google Scholar] [CrossRef]
- Liu, C.; Tong, F. An SIW resonator sensor for liquid permittivity measurements at C band. IEEE Microw. Wirel. Compon. Lett. 2015, 25, 751–753. [Google Scholar] [CrossRef]
- Seo, Y.; Memon, M.U.; Lim, S. Microfluidic eighth-mode substrate-integrated-waveguide antenna for compact ethanol chemical sensor application. IEEE Trans. Antennas Propag. 2016, 64, 3218–3222. [Google Scholar] [CrossRef]
- Sama, N.Y.; Ndoye, M.; Deslandes, D.; Domingue, F. Partially-open SIW resonator for microwave characterization of particulate dielectrics: Effect of interaction with gases. In Proceedings of the 2016 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), Nanjing, China, 16–18 May 2016; pp. 1–3. [Google Scholar] [CrossRef]
- Liu, S.; Ocket, I.; Schreurs, D.; De Raedt, W.; Nauwelaers, B. A 90 GHz liquid sensing substrate integrated cavity resonator in LTCC for microfluidic sensing applications. In Proceedings of the 2014 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio2014), London, UK, 8–10 December 2014; pp. 1–3. [Google Scholar]
- Rahman, N.A.; Zakaria, Z.; Rahim, R.A.; Alahnomi, R.A.; Al-Gburi, A.J.A.; Alhegazi, A.; Rashid, W.N.A.; Bahar, A.A.M. Liquid Permittivity Sensing Using Teeth Gear-Circular Substrate Integrated Waveguide. IEEE Sens. J. 2022, 22, 11690–11697. [Google Scholar] [CrossRef]
- Lobato-Morales, H.; Corona-Chavez, A.; Olvera-Cervantes, J.L.; Chavez-Perez, R.A.; Medina-Monroy, J.L. Wireless sensing of complex dielectric permittivity of liquids based on the RFID. IEEE Trans. Microw. Theory Tech. 2014, 62, 2160–2167. [Google Scholar] [CrossRef]
- Buragohain, A.; Mostako, A.T.T.; Das, G.S. Low-Cost CSRR Based Sensor for Determination of Dielectric Constant of Liquid Samples. IEEE Sens. J. 2021, 21, 27450–27457. [Google Scholar] [CrossRef]
- Stuchly, M.A.; Stuchly, S.S. Coaxial Line Reflection Methods for Measuring Dielectric Properties of Biological Substances at Radio and Microwave Frequencies-A Review. IEEE Trans. Instrum. Meas. 1980, 29, 176–183. [Google Scholar] [CrossRef]
- Gregory, A.; Clarke, R. A review of RF and microwave techniques for dielectric measurements on polar liquids. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 727–743. [Google Scholar] [CrossRef]
- Jha, S.N.; Narsaiah, K.; Basediya, A.L.; Sharma, R.; Jaiswal, P.; Kumar, R.; Bhardwaj, R. Measurement techniques and application of electrical properties for nondestructive quality evaluation of foods—A review. J. Food Sci. Technol. 2011, 48, 387–411. [Google Scholar] [CrossRef]
- Gregory, A.P.; Clarke, R.N. Tables of the Complex Permittivity of Dielectric Reference Liquids at Frequencies up to 5 GHz. NPL Rep. Available online: https://eprintspublications.npl.co.uk/2076/ (accessed on 16 April 2023).
- Kiani, S.; Rezaei, P.; Fakhr, M. Dual-Frequency Microwave Resonant Sensor to Detect Noninvasive Glucose-Level Changes Through the Fingertip. IEEE Trans. Instrum. Meas. 2021, 70, 6004608. [Google Scholar] [CrossRef]
- Navaei, M.; Rezaei, P.; Kiani, S. Microwave split ring resonator sensor for determination of the fluids permittivity with measurement of human milk samples. Radio Sci. 2022, 57, 1–11. [Google Scholar] [CrossRef]
- Munoz-Enano, J.; Velez, P.; Gil, M.; Martin, F. Frequency-Variation Sensors for Permittivity Measurements Based on Dumbbell-Shaped Defect Ground Structures (DB-DGS): Analytical Method and Sensitivity Analysis. IEEE Sens. J. 2022, 22, 9378–9386. [Google Scholar] [CrossRef]
- Wu, W.-J.; Zhao, W.-S.; Wang, D.-W.; Yuan, B.; Wang, G. An active microfluidic sensor based on slow-wave substrate integrated waveguide for measuring complex permittivity of liquids. Sens. Actuators A Phys. 2022, 344, 113699. [Google Scholar] [CrossRef]
- Withayachumnankul, W.; Jaruwongrungsee, K.; Tuantranont, A.; Fumeaux, C.; Abbott, D. Metamaterial-based micro-fluidic sensor for dielectric characterization. Sens. Actuators A Phys. 2013, 189, 233–237. [Google Scholar] [CrossRef]
- Kiani, S.; Rezaei, P.; Navaei, M. Dual-sensing and dual-frequency microwave SRR sensor for liquid samples permittivity detection. Measurement 2020, 160, 107805. [Google Scholar] [CrossRef]
- Su, L.; Munoz-Enano, J.; Velez, P.; Martel, J.; Medina, F.; Martin, F. On the Modeling of Microstrip Lines Loaded with Dumbbell Defect-Ground-Structure (DB-DGS) and Folded DB-DGS Resonators. IEEE Access 2021, 9, 150878–150888. [Google Scholar] [CrossRef]
- Kandwal, A.; Nie, Z.; Igbe, T.; Li, J.; Liu, Y.; Liu, L.W.; Hao, Y. Surface Plasmonic Feature Microwave Sensor with Highly Confined Fields for Aqueous-Glucose and Blood-Glucose Measurements. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Al-Gburi, A.J.A.; Zakaria, Z.; Ibrahim, I.M.; Aswir, R.S.; Alam, S. Solid Characterization Utilizing Planar Microwave Resonator Sensor. Appl. Comput. Electromagn. Soc. 2022, 37, 222–228. [Google Scholar] [CrossRef]
- Khalil, M.; Jomaah, J.; Kamarei, M. Miniaturized SIW sensor for liquid permittivity measurements. In Proceedings of the 2017 Sensors Networks Smart and Emerging Technologies (SENSET), Beirut, Lebanon, 12–14 September 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Jafari, F.S.; Ahmadi-Shokouh, J. Industrial liquid characterization enhancement using microwave sensor equipped with electronic band gap structure. AEU-Int. J. Electron. Commun. 2017, 82, 152–159. [Google Scholar] [CrossRef]
- Wei, Z.; Huang, J.; Li, J.; Xu, G.; Ju, Z.; Liu, X.; Ni, X. A high-sensitivity microfluidic sensor based on a substrate integrated waveguide re-entrant cavity for com-plex permittivity measurement of liquids. Sensors 2018, 18, 4005. [Google Scholar] [CrossRef]
- Aziz, N.A.A.; Malaysia, U.P.; Hassan, J.; Abbas, Z.; Osman, N.H. Microwave Dielectric Properties of Four Types of Rhizomes from Zingiberaceace Family. J. Phys. Sci. 2017, 28, 15–26. [Google Scholar] [CrossRef]
- Masrakin, K.; Ibrahim, S.Z.; Rahim, H.A.; Azemi, S.N.; Soh, P.J.; Tantiviwat, S. Microstrip Sensor Based on Ring Resonator Coupled with Double Square Split Ring Resonator for Solid Material Permittivity Characterization. Micromachines 2023, 14, 790. [Google Scholar] [CrossRef]
- Jafari, F.S.; Ahmadi-Shokouh, J. Reconfigurable microwave SIW sensor based on PBG structure for high accuracy permittivity characterization of industrial liquids. Sens. Actuators A Phys. 2018, 283, 386–395. [Google Scholar] [CrossRef]
- Balanis, C.A.; Holzman, E. Circular Waveguides. In Encyclopedia of RF and Microwave Engineering; Wiley: Hoboken, NJ, USA, 2005; pp. 551–564. [Google Scholar]
- Chen, C.M.; Xu, J. A Miniaturized Evanescent Mode HMSIW Humidity Sensor. Int. J. Microw. Wirel. Technol. 2018, 10, 87–91. [Google Scholar] [CrossRef]
- Jha, A.K.; Akhtar, M.J. SIW Cavity Based RF Sensor for Dielectric Characterization of Liquids. In Proceedings of the 2014 IEEE Conference on Antenna Measurements & Applications (CAMA), Antibes Juan-les-Pins, France, 16–19 November 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Yang, X.; Xin, L.; Jiao, X.; Zhou, P.; Wu, S.; Huang, K. High-Sensitivity Structure for the Measurement of Complex Permittivity Based on SIW. IET Sci. Meas. Technol. 2017, 11, 532–537. [Google Scholar] [CrossRef]
- Wiwatcharagoses, N.; Park, K.Y.; Chahal, P. Metamaterial-Inspired Miniaturized Microwave Sensing Probes. In Proceedings of the 2012 IEEE 62nd Electronic Components and Technology Conference, San Diego, CA, USA, 29 May–1 June 2012; pp. 2106–2111. [Google Scholar]
- Karimi, F. Properties of the Drying of Agricultural Products in Microwave Vacuum: A Review Article. J. Agric. Technol. 2010, 6, 269–287. [Google Scholar]
- Racoti, A.; Buttress, A.J.; Binner, E.; Dodds, C.; Trifan, A.; Calinescu, I. Microwave Assisted Hydro-Distillation of Essential Oils from Fresh Ginger Root (Zingiber officinale Roscoe). J. Essent. Oil Res. 2017, 29, 471–480. [Google Scholar] [CrossRef]
- Bakir, M. Electromagnetic-based microfluidic sensor applications. J. Electrochem. Soc. 2017, 164, B488–B494. [Google Scholar] [CrossRef]
- Zhang, X.; Ruan, C.; Haq, T.U.; Chen, K. High-Sensitivity Microwave Sensor for Liquid Characterization Using a Complementary Circular Spiral Resonator. Sensors 2019, 19, 787. [Google Scholar] [CrossRef]
- Armghan, A.; Alanazi, T.M.; Altaf, A.; Haq, T. Characterization of Dielectric Substrates Using Dual Band Microwave Sensor. IEEE Access 2021, 9, 62779–62787. [Google Scholar] [CrossRef]
- Velez, P.; Grenier, K.; Mata-Contreras, J.; Dubuc, D.; Martin, F. Highly-Sensitive Microwave Sensors Based on Open Complementary Split Ring Resonators (OCSRRs) for Dielectric Characterization and Solute Concentration Measurement in Liquids. IEEE Access 2018, 6, 48324–48338. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Huang, Z.; Yu, S.; Yang, X.; Shang, X. A Sensor for Characterisation of Liquid Materials with High Permittivity and High Dielectric Loss. Sensors 2022, 22, 1764. [Google Scholar] [CrossRef] [PubMed]
- Javed, A.; Arif, A.; Zubair, M.; Mehmood, M.Q.; Riaz, K. A Low-Cost Multiple Complementary Split-Ring Resonator-Based Microwave Sensor for Contactless Dielectric Characterization of Liquids. IEEE Sens. J. 2020, 20, 11326–11334. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Deng, L.; Karaaslan, M.; Altıntaş, O.; Awl, H.N.; Muhammadsharif, F.F.; Liao, C.; Unal, E.; Luo, H. Novel metamaterials-based hypersensitized liquid sensor integrating omega-shaped resonator with mi-crostrip transmission line. Sensors 2020, 20, 943. [Google Scholar] [CrossRef]
- Kiani, S.; Rezaei, P.; Navaei, M.; Abrishamian, M.S. Microwave Sensor for Detection of Solid Material Permittivity in Single/Multilayer Samples with High Quality Factor. IEEE Sens. J. 2018, 18, 9971–9977. [Google Scholar] [CrossRef]
- Alhegazi, A.; Zakaria, Z.; Shairi, N.A.; Kamarudin, M.R.; Alahnomi, R.A.; Azize, A.; Hassan, W.H.W.; Bahar, A.; Al-Gburi, A.J.A. Novel Technique of Gap Waveguide Cavity Resonator Sensor with High Resolution for Liquid Detection. Int. J. Antennas Propag. 2022, 2022, 2401586. [Google Scholar] [CrossRef]
Design Specifications | |
---|---|
Material | RT/duroid 5880 |
Dielectric constant | 2.2 |
Loss tangent | 0.0009 |
Thickness of the substrate, h | 3.175 mm |
Thickness of copper, t | 0.035 mm |
ρnm | m = 0 | m = 1.0 | m = 2.0 | m = 3.0 | m = 4.0 |
---|---|---|---|---|---|
n = 1 | 2.4049 | 3.8318 | 5.1357 | 6.3802 | 7.5884 |
n = 3 | 5.5201 | 7.0156 | 8.4173 | 9.7610 | 11.0647 |
n = 3 | 8.6537 | 10.1735 | 11.6199 | 13.0152 | 14.3726 |
Modes | Bessel Function | Frequency (GHz) | |||||
---|---|---|---|---|---|---|---|
First Mode | Second Mode | Third Mode | Fourth Mode | Fifth Mode | Sixth Mode | ||
TM010 | 2.4049 | 2.45 | |||||
TM110 | 3.8318 | 2.45 | 3.896 | ||||
TM210 | 5.1357 | 2.45 | 3.896 | 5.22 | |||
TM020 | 5.5201 | 2.45 | 3.896 | 5.22 | 5.612 | ||
TM310 | 6.3802 | 2.45 | 3.896 | 5.22 | 5.612 | 6.487 | |
TM120 | 7.0156 | 2.45 | 3.896 | 5.22 | 5.612 | 6.487 | 7.133 |
Diameter (DMDGS) in mm | Frequency (GHz) | Insertion Loss (dB) | E-Fields (v/m) |
---|---|---|---|
7.1 | 2.47 | −2.69112 | 3.0041 × 104 |
7.6 | 2.46 | −4.52531 | 3.0263 × 104 |
8.1 | 2.45 | −3.66046 | 3.0673 × 104 |
8.6 | 2.43 | −3.64054 | 3.1411 × 104 |
9.1 | 2.40 | −3.94756 | 3.2743 × 104 |
SUTs | Frequency (GHz) | S21 (dB) | Frequency Changed (MHz) |
---|---|---|---|
Without a tube | 2.45 | −3.5610 | 0 |
Air (empty tube) | 2.44 | −3.545 | 10 |
Turmeric | 2.356 | −6.161 | 94 |
Javanese turmeric | 2.343 | −6.160 | 107 |
Black turmeric | 2.338 | −6.2495 | 112 |
Mango ginger | 2.332 | −6.162 | 118 |
DI water | 2.316 | −5.158 | 134 |
SUTs | Q-Factor | Simulation | Measurement | ||
---|---|---|---|---|---|
Frequency (GHz) | S21 (dB) | Frequency (GHz) | S21 (dB) | ||
Without a tube | 700 | 2.45 | −3.561 | 2.448 | −3.375 |
With a tube | 300 | 2.44 | −3.545 | 2.432 | −2.392 |
SUTs | Frequency, f (GHz) | Permittivity (ε′) | ||||||
---|---|---|---|---|---|---|---|---|
f1 | f2 | f3 | ε′1 | ε′2 | ε′3 | |||
Air (empty tube) | 2.432 | 2.4318 | 2.432 | 2.4322 | 1.001 | 0.9890 | 1.0014 | 1.0143 |
Turmeric | 2.352 | 2.3517 | 2.3527 | 2.3521 | 35.554 | 33.8177 | 32.9428 | 33.4663 |
Javanese turmeric | 2.34 | 2.3405 | 2.3409 | 2.3398 | 44.928 | 44.4198 | 44.0158 | 45.1314 |
Black turmeric | 2.336 | 2.3365 | 2.3357 | 2.3361 | 49.095 | 48.5637 | 49.4151 | 48.9885 |
Mango ginger | 2.328 | 2.3275 | 2.3279 | 2.3283 | 57.994 | 58.5754 | 58.1103 | 57.6469 |
Dielectric water | 2.312 | 2.3118 | 2.3128 | 2.3114 | 78.050 | 78.3202 | 76.9761 | 78.8611 |
SUTs | Relative Permittivity (εr) | Simulation | Measurement | ||
---|---|---|---|---|---|
Frequency (GHz) | S21 (dB) | Frequency (GHz) | S21 (dB) | ||
Air (empty tube) | 1.0006 | 2.44 | −3.545 | 2.432 | −3.392 |
Turmeric | 34.52 | 2.356 | −6.161 | 2.352 | −9.456 |
Javanese turmeric | 45.6 | 2.343 | −6.16 | 2.34 | −10.205 |
Black turmeric | 46.68 | 2.338 | −6.2495 | 2.336 | −9.686 |
Mango ginger | 58.61 | 2.332 | −6.162 | 2.328 | −10.503 |
Dielectric water | 78.4 | 2.316 | −5.158 | 2.312 | −7.385 |
SUTs | Frequency Shifting (GHz) | Reference Relative Permittivity [56] | Proposed Sensor | * Commercial Sensor | ||
---|---|---|---|---|---|---|
Relative Permittivity (ε′) | Error (%) | Relative Permittivity (ε′) | Error (%) | |||
Air (empty tube) | 2.432 | 1.0006 | 1.006 | 10.03 | 1.0089 | 0.288 |
Turmeric | 2.352 | 34.52 | 34.317 | 0.59 | 52.29 | 55.838 |
Javanese turmeric | 2.34 | 45.6 | 45.047 | 1.21 | 54.45 | 21.194 |
Black turmeric | 2.336 | 46.68 | 46.285 | 0.85 | 48.88 | 0.438 |
Mango ginger | 2.328 | 58.61 | 59.366 | 1.29 | 41.14 | 29.062 |
Dielectric water | 2.312 | 78.4 | 78.177 | 0.28 | 79.92 | 2.396 |
Average error | 1.86% | 18.2% |
SUTs | Frequency Shifting (Δf) | Reference Ideal Loss Tangent | Proposed Sensor | * Commercial Sensor | ||
---|---|---|---|---|---|---|
Loss Tangent (tan δ) | Error (%) | Loss Tangent (tan δ) | Error (%) | |||
Air (empty tube) | 0.016 | 0 | 0.0001 | 0 | 0.0001 | 0 |
Turmeric | 0.096 | 0.39 | 0.3798 | 2.6 | 0.253 | 35.135 |
Javanese turmeric | 0.108 | 0.4 | 0.4456 | 11.4 | 0.252 | 36.905 |
Black turmeric | 0.112 | 0.48 | 0.4459 | 7.1 | 0.261 | 45.615 |
Mango ginger | 0.12 | 0.41 | 0.4061 | 1.0 | 3.83 | 6.702 |
Dielectric water | 0.136 | 0.123 | 0.1253 | 1.9 | 0.197 | 45.43 |
Average error | 4% | 28.3% |
SUTs | f (GHz) | Δf (GHz) | Reference | Calculated | ||||
---|---|---|---|---|---|---|---|---|
ε′ | tan δ | ε″ | ε′ | tan δ | ε″ | |||
Air (empty tube) | 2.432 | 0.016 | 1.0006 | 0 | 0 | 1001 | 0.0001 | 0.0001 |
Turmeric | 2.352 | 0.096 | 34.52 | 0.39 | 13.46 | 33.554 | 0.3798 | 12.7438 |
Javanese turmeric | 2.340 | 0.108 | 45.6 | 0.4 | 18.24 | 44.928 | 0.4456 | 20.0199 |
Black turmeric | 2.336 | 0.112 | 46.68 | 0.48 | 22.41 | 49.095 | 0.4459 | 21.8915 |
Mango ginger | 2.328 | 0.12 | 58.61 | 0.41 | 24.03 | 57.994 | 0.4061 | 23.5514 |
Onion | 2.320 | 0.128 | 64 | 0.218 | 14 | 67.646 | 0.3023 | 20.4494 |
Ginger | 2.316 | 0.132 | 71.42 | 0.199 | 14.23 | 72.754 | 0.224 | 16.2969 |
Dielectric water | 2.312 | 0.136 | 78.4 | 0.123 | 9.64 | 78.050 | 0.1253 | 9.7797 |
SUTs | Frequency (GHz) | Δf (MHz) | εr | Δεr | S (MHz/εr) |
---|---|---|---|---|---|
Air (empty tube) | 2.432 | 16 | 1.0006 | 0 | 0 |
Turmeric | 2.352 | 96 | 34.52 | 33.519 | 2.864 |
Javanese turmeric | 2.340 | 108 | 45.6 | 44.599 | 2.422 |
Black turmeric | 2.336 | 112 | 46.68 | 45.679 | 2.452 |
Mango ginger | 2.328 | 120 | 58.61 | 57.609 | 2.083 |
Dielectric water | 2.312 | 136 | 78.4 | 77.399 | 1.757 |
# | Reference | Sensor Size (mm) | Used Techniques | SUTs | Frequency Band (GHz) | Q-Factor | Sensitivity (S) |
---|---|---|---|---|---|---|---|
1 | [25] | 80 × 40 × 0.8 | Metamaterial coupling | Ethanol and methanol | 2.5 | Not reported | 0.27 |
2 | [28] | 80 × 25 × 0.8 | Loss-compensated SRR | Glucose | 1.156 | 190 | Not reported |
3 | [29] | 26 × 30 × 26.5 | Waveguide with a loop slot | Ethanol and dielectric water | 91 | Not reported | Not reported |
4 | [30] | 112.96 × 49.16 × 3.175 | Multiple split-ring resonator | Ethanol, methanol, and air | 2.1 | 525 | Not reported |
5 | [33] | 75 × 33 × 1 | SIW | Ethanol and water | 5.85 | 334.6 | Not reported |
6 | [34] | 50 × 40 × 1.6 | EMSIW | Ethanol, methanol, and dielectric water | 4.6 | Not reported | 1.5 |
7 | [35] | 45 × 45 | SIW | Semisolid and non-solid materials | 2.5 | 152 | Not reported |
8 | [36] | Not reported | SICR | Microfluidic applications | 92.65 | Not reported | 0.061 |
9 | [66] | 25 x 35 x 1.6 | SRR | Microfluidic sensor applications | 4–6 | 230 | Not reported |
10 | [67] | 25 × 30 × 1.54 | CCSR | Ethanol, methanol, and milk | 2.4 | Not reported | Not reported |
11 | [68] | 30 × 25 × 1.6 | CSSRRs | AIR, HDPE, and PVC | 5.35 and 7.99 | 267.5 | 0.04 |
12 | [69] | 46 × 46 × 1.6 | OCSRRs | Ethanol, methanol, and dielectric water | 0.9 | Not reported | 4.3 |
13 | [70] | 28 × 20 × 0.75 | CSRR | Ethanol and water | 2.85 and 2.96 | 145 | 3.0 |
14 | [71] | 35 × 25 × 1.6 | SRR | Ethanol, methanol, and dielectric water | 2.45 | 31 | 0.214 |
15 | [72] | 40 × 20 × 1.6 | OSRR | Ethanol, methanol, dielectric water | 2.5–3.5 | Not reported | Not reported |
16 | [73] | 30 × 13 × 0.508 | MML | Solid | 5.65 | 217 | 3.25 |
17 | [74] | 38 × 35.4 × 15.73 | GWCR | Ethanol, methanol, and air | 5.96 | 66.8 | 0.156 |
This work | 69 × 69 × 3.175 | MDGS-CSIW | Javanese turmeric, mango ginger, black turmeric, turmeric, and distilled water (DI) | 2.45 | 700 | 2.864 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Gburi, A.J.A.; Rahman, N.A.; Zakaria, Z.; Akbar, M.F. Realizing the High Q-Factor of a CSIW Microwave Resonator Based on an MDGS for Semisolid Material Characterization. Micromachines 2023, 14, 922. https://doi.org/10.3390/mi14050922
Al-Gburi AJA, Rahman NA, Zakaria Z, Akbar MF. Realizing the High Q-Factor of a CSIW Microwave Resonator Based on an MDGS for Semisolid Material Characterization. Micromachines. 2023; 14(5):922. https://doi.org/10.3390/mi14050922
Chicago/Turabian StyleAl-Gburi, Ahmed Jamal Abdullah, Norhanani Abd Rahman, Zahriladha Zakaria, and Muhammad Firdaus Akbar. 2023. "Realizing the High Q-Factor of a CSIW Microwave Resonator Based on an MDGS for Semisolid Material Characterization" Micromachines 14, no. 5: 922. https://doi.org/10.3390/mi14050922
APA StyleAl-Gburi, A. J. A., Rahman, N. A., Zakaria, Z., & Akbar, M. F. (2023). Realizing the High Q-Factor of a CSIW Microwave Resonator Based on an MDGS for Semisolid Material Characterization. Micromachines, 14(5), 922. https://doi.org/10.3390/mi14050922