High-Speed Temperature Control Method for MEMS Thermal Gravimetric Analyzer Based on Dual Fuzzy PID Control
Abstract
:1. Introduction
2. Principle of Integrated Microheater
3. Design of Temperature Control Method
3.1. Transfer Function of Controlled Object
3.2. Select a Temperature Control Scheme
3.3. Nonlinear Adjustment
3.4. Improve Overshoot
Y(t) | R(t) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
T0 | T100 | T150 | T200 | T250 | T300 | T350 | T400 | T600 | T800 | |
T0 | J1 | A1 | B1 | C1 | D1 | E1 | F1 | G1 | H1 | I1 |
T100 | A1 | J2 | A2 | B2 | C2 | D2 | E2 | F2 | G2 | H1 |
T150 | B1 | A2 | J3 | A3 | B3 | C3 | D3 | E3 | F3 | G3 |
T200 | C1 | B2 | A3 | J4 | A4 | B4 | C4 | D4 | E4 | F4 |
T250 | D1 | C2 | B3 | A4 | J5 | A5 | B5 | C5 | D5 | E5 |
T300 | E1 | D2 | C3 | B4 | A5 | J6 | A6 | B6 | C6 | D6 |
T350 | F1 | E2 | D3 | C4 | B5 | A6 | J7 | A7 | B7 | C7 |
T400 | G1 | F2 | E3 | D4 | C5 | B6 | A7 | J8 | A8 | B8 |
T600 | H1 | G2 | F3 | E4 | D5 | C6 | B7 | A8 | J9 | A9 |
T800 | I1 | H2 | G3 | F4 | E5 | D6 | C7 | B8 | A9 | J10 |
E(t) | EC(t) | ||||||
---|---|---|---|---|---|---|---|
NB | NM | NS | ZO | PS | PM | PB | |
NB | ZO | ZO | NM | NM | NS | NM | ZO |
NM | ZO | ZO | NM | NS | NS | NM | ZO |
NS | ZO | NM | NS | NM | NS | NS | ZO |
ZO | NS | ZO | NS | NB | NS | NS | ZO |
PS | ZO | ZO | NS | NM | NM | NS | ZO |
PM | ZO | NM | NS | NM | NM | ZO | ZO |
PB | ZO | NM | NM | NM | NM | ZO | ZO |
E(t) | EC(t) | ||||||
---|---|---|---|---|---|---|---|
NB | NM | NS | ZO | PS | PM | PB | |
NB | NB | NM | NB | NB | NS | ZO | ZO |
NM | NM | NM | NM | NM | NM | NM | NM |
NS | NM | NM | NM | NM | NM | NM | NM |
ZO | NM | NM | NS | ZO | NM | NM | NM |
PS | NM | NM | NS | NS | NM | NM | NM |
PM | NM | NM | ZO | ZO | NS | NM | NM |
PB | NM | NS | NM | ZO | NS | NS | PM |
3.5. Hardware System Design
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ozawa, T. Thermal Analysis—Review and prospect. Thermochim. Acta 2000, 355, 35–42. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011, 520, 1–19. [Google Scholar] [CrossRef]
- Clarke, T.A.; Thomas, J.M. Extraction of Meaningful Kinetic Parameters from Thermogravimetric Analysis. Nature 1968, 219, 1149–1151. [Google Scholar]
- Yao, F.; Xu, P.; Jia, H. Thermogravimetric Analysis on a Resonant Microcantilever. Anal. Chem. 2022, 94, 9380–9388. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z. Development of Numerical Modeling and Temperature Controller Optimization for Internal Heating Vacuum Furnace. IEEE Acccess 2021, 9, 126765–126773. [Google Scholar] [CrossRef]
- Czajka, K.M. The impact of the thermal lag on the interpretation of cellulose pyrolysis. Energy 2021, 236, 121497. [Google Scholar] [CrossRef]
- Ditzhuijze, G.V.; Staalman, D.; Koorn, A. Identification and model predictive control of a slab reheating furnace. In Proceedings of the International Conference on Control Applications, Glasgow, UK, 18–20 September 2002; Volume 1, pp. 361–366. [Google Scholar]
- Loganathan, S.; Mishra, R.K.; Thomas, S.; Valapa, R.B.; Pugazhenthi, G. Chapter 4—Thermogravimetric Analysis for Characterization of Nanomaterials. In Micro and Nano Technologies; Thomas, S., Thmas, R., Zachariah, A.K., Mishra, R.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 67–108. [Google Scholar]
- Onsree, T.; Tippayawong, N.; Zheng, A. Pyrolysis behavior and kinetics of corn residue pellers and eucalyptuswood chips in a macro thermogravimetric analyzer. Case Stud. Therm. Eng. 2018, 12, 546–556. [Google Scholar]
- Ebrahimpour, O.; Chaouki, J.; Dubois, C. Diffusional effects for the oxidation of SiC powders in thermogravimetric analysis experiments. J. Mater. Sci. 2013, 48, 4396–4407. [Google Scholar] [CrossRef]
- Vekemans, O.; Laviolette, J.P.; Chaouki, J. Thermal behavior of an engineered fuel and its constituents for a large range of heating rates with emphasis on heat transfer limitations. Thermochim. Acta 2015, 601, 54–62. [Google Scholar] [CrossRef]
- Yang, Y.T.; Callegari, C.; Feng, X.L. Zeptogram-Scale Nanomechanical Mass Sensing. Nano Lett. 2006, 6, 583–586. [Google Scholar] [CrossRef]
- Gruber, G.; Urgell, C.; Tavernarakis, A. Mass Sensing for the Advanced Fabrication of Nanomechanical Resonators. Nano Lett. 2019, 19, 6987–6992. [Google Scholar] [CrossRef]
- Saadatkhah, N.; Carillo, G.A.; Ackermann, S. Eperimental me3thods in chemical engineering: Thermogravimetric analysis—TGA. Can. J. Chem. Eng. 2020, 98, 34–43. [Google Scholar] [CrossRef]
- Fong, M.J.B.; Loy, A.C.M.; Chin, B.L.F.; Lam, M.K.; Yusup, S.; Jawad, Z.A. Catalytic pyrolysis of Chlorella vulgaris: Kinetic and thermodynamic analysis. Bioresour. Technol. 2019, 289, 121689. [Google Scholar]
- Marino, A.; Aloise, A.; Hernando, H.; Fermoso, J.; Cozza, D.; Giglio, E.; Migliori, M.; Pizarro, P.; Giordano, G.; Serrano, D.P. ZSM-5 zeolites performance assessment in catalytic pyrolysis of PVC-containing real WEEE plastic wastes. Catal. Today 2022, 390–391, 210–220. [Google Scholar] [CrossRef]
- Inayat, A.; Ahmed, A.; Tariq, R.; Waris, A.; Jamil, F.; Ahmed, S.F.; Ghenai, C.; Park, Y.-K. Techno-Economical Evaluation of Bio-Oil Production via Biomass Fast Pyrolysis Process: A Review. Front. Energy Res. 2022, 9, 113936. [Google Scholar] [CrossRef]
- Mourad, S.; El Ghoul, J.; Khettou, A.; Mari, B.; Abdel All, N.; Khouqeer, G.; El Mir, L.; Khirouni, K. Effect of oxygen annealing treatment on structural, optical and electrical properties of In doped ZnO thin films prepared by PLD technique. Physica B 2022, 626, 413577. [Google Scholar]
- Guillén, C.; Montero, J.; Herrero, J. Influence of N-doping and air annealing on the structural and optical properties of TiO2 thin films deposited by reactive DC sputtering at room temperature. J. Alloys Compd. 2015, 647, 498–506. [Google Scholar]
- To Loan, N.T.; Hien Lan, N.T.; Thuy Hang, N.T.; Quang Hai, N.; Tu Anh, D.T.; Thi Hau, V.; Van Tan, L.; Van Tran, T. CoFe2O4 Nanomaterials: Effect of Annealing Temperature on Characterization, Magnetic, Photocatalytic, and Photo-Fenton Properties. Processes 2019, 7, 885. [Google Scholar] [CrossRef]
- Nakayama, J. Thermal Shock Resistance of Ceramic Materials. In Fracture Mechanics of Ceramics: Volume 2 Microstructure, Materials, and Applications; Bradt, R.C., Hasselman, D.P.H., Lange, F.F., Eds.; Springer: Boston, MA, USA, 1974; pp. 759–778. [Google Scholar]
- Kim, D.; Lee, D.; Lee, S.; Park, K.; Lee, H.-G.; Park, J.Y.; Kim, W.-J. Thermal shock resistance and hoop strength of triplex silicon carbide composite tubes. Int. J. Appl. Ceram. Technol. 2017, 14, 1069–1076. [Google Scholar] [CrossRef]
- Fujii, K.; Yamada, R. Thermal shock resistance of SiC compositionally graded C/C composites. J. Nucl. Mater. 1998, 258–263, 1953–1959. [Google Scholar]
- Lee, C.Y.; Lee, G.B.; Liu, H.H. MEMS-based Temperature Control Systems for DNA Amplification. Int. J. Nonlinear Sci. Numer. Simul. 2002, 3, 215–218. [Google Scholar] [CrossRef]
- Chen, W.; Xin, G. The improvement research of gyroscope temperature control based on self-adaptive ANN. In Proceedings of the 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chengdu, China, 20–22 December 2019; Volume 1, pp. 2148–2151. [Google Scholar]
- Jiang, Y.; Zhao, Y. Design of temperature compensation system for MEMS gyroscopes based on STM32. In Proceedings of the IOP Conference Series: Materials Science and Engineering, 4th Annual International Workshop on Materials Science and Engineering (IWMSE2018), Xi’an, China, 18–20 May 2018; Volume 381, p. 012139. [Google Scholar]
- Jiang, S.B.; SU, W.G.; Wan, S.; Deng, K.F.; Zhang, W. Study on Temperature Control System Based on a MEMS Heater. J. Peking Univ. (Nat. Sci.) 2019, 43, 94–101. [Google Scholar]
- Chen, J.; Lu, Q.; Bai, J. A Temperature Control Method for Microaccelerometer Chips Based on Genetic Algorithm and Fuzzy PID Control. Micromachines 2021, 12, 1511. [Google Scholar] [CrossRef]
- Lu, T.; Fei, C.; Xuan, L. Intelligent Modeling and Design of a Novel Temperature Control System for a Cantilever-Based Gas-Sensitive Material Analyzer. IEEE Acccess 2021, 9, 21132–21148. [Google Scholar] [CrossRef]
- Chen, G.H.; Li, M.F.; Zhang, J. Application of fuzzy PID improved algorithm in thermogravimetric analysis of furnace temperature control. J. Beijing Jiaotong Univ. 2019, 43, 94–101. [Google Scholar]
- Zhang, S.L.; Ostling, M.; Norstrom, H.; Arnborg, T. On contact resistance measurement using four-terminal Kelvin structures in advanced double-polysilicon bipolar transistor processes. IEEE Trans. Electron Devices 1994, 41, 1414–1420. [Google Scholar] [CrossRef]
Control Method | Genetic Algorithm-Based Fuzzy PID | Particle Swarm Optimization (PSO)-Based Fuzzy PID | Fuzzy PID Improved Algorithm | Dual Fuzzy PID |
---|---|---|---|---|
Temperature control rate (°C/min) | 28 | 20 | 30 | 6000 |
Control Method | Simulation | Experiment | ||
---|---|---|---|---|
tarrival (s) | Eover (‰) | tarrival (s) | Eover (‰) | |
Traditional PID | 1.0 | 4.53 | 0.9 | 5.35 |
Fuzzy pid | 0.6 | 5.41 | 0.4 | 6.40 |
Double-fuzzy PID | 0.6 | 4.17 | 0.5 | 4.86 |
Temperature Rise at 50 °C | tarrival (s) | Eover (‰) | Power Consumption (mV) | ||||||
---|---|---|---|---|---|---|---|---|---|
Traditional PID | Fuzzy PID | Double-Fuzzy PID | Traditional PID | Fuzzy PID | Double-Fuzzy PID | Traditional PID | Fuzzy PID | Double-Fuzzy PID | |
100 °C | 3.5 | 0.6 | 0.6 | 2.29 | 2.67 | 2.24 | 2.34 | 2.62 | 2.64 |
200 °C | 3.2 | 0.4 | 0.5 | 3.55 | 5.50 | 3.15 | 8.19 | 7.86 | 8.70 |
300 °C | 1.9 | 0.5 | 0.5 | 3.92 | 4.66 | 3.58 | 11.66 | 13.57 | 13.88 |
400 °C | 1.2 | 0.4 | 0.4 | 3.31 | 5.03 | 2.88 | 11.78 | 15.77 | 14.96 |
500 °C | 0.9 | 0.4 | 0.5 | 5.35 | 6.40 | 4.86 | 12.80 | 17.39 | 20.14 |
600 °C | 0.7 | 0.5 | 0.5 | 5.10 | 6.40 | 4.67 | 13.01 | 22.40 | 21.08 |
700 °C | 0.7 | 0.4 | 0.5 | 6.19 | 7.84 | 5.44 | 13.09 | 23.91 | 22.32 |
800 °C | 0.8 | 0.5 | 0.5 | 8.17 | 8.85 | 6.06 | 13.70 | 25.96 | 26.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Cao, Z.; Wang, S.; Yao, L.; Yu, H. High-Speed Temperature Control Method for MEMS Thermal Gravimetric Analyzer Based on Dual Fuzzy PID Control. Micromachines 2023, 14, 929. https://doi.org/10.3390/mi14050929
Zhang X, Cao Z, Wang S, Yao L, Yu H. High-Speed Temperature Control Method for MEMS Thermal Gravimetric Analyzer Based on Dual Fuzzy PID Control. Micromachines. 2023; 14(5):929. https://doi.org/10.3390/mi14050929
Chicago/Turabian StyleZhang, Xiaoyang, Zhi Cao, Shanlai Wang, Lei Yao, and Haitao Yu. 2023. "High-Speed Temperature Control Method for MEMS Thermal Gravimetric Analyzer Based on Dual Fuzzy PID Control" Micromachines 14, no. 5: 929. https://doi.org/10.3390/mi14050929
APA StyleZhang, X., Cao, Z., Wang, S., Yao, L., & Yu, H. (2023). High-Speed Temperature Control Method for MEMS Thermal Gravimetric Analyzer Based on Dual Fuzzy PID Control. Micromachines, 14(5), 929. https://doi.org/10.3390/mi14050929