Unraveling an Ultrafast Electron Transport Mechanism in a Photocatalytic “Micromachine” for Their Potential Light Harvesting Applications
Abstract
:1. Introduction
2. Models and Methods
2.1. Reagents
2.2. Synthesis of Hybrid Materials
2.3. Methods of Characterization
2.4. Femto-Second-Resolved Fluorescence Measurements Using Streak Camera Images
2.5. Dichlorofluorescein (DCFH) Test for ROS Generation
2.6. Methods for Photocatalysis Test
3. Result and Discussion
3.1. Optical and Structural Characterization
3.2. Photocatalytic Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aldalbahi, A.; El-Naggar, M.E.; El-Newehy, M.H.; Rahaman, M.; Hatshan, M.R.; Khattab, T.A. Effects of technical textiles and synthetic nanofibers on environmental pollution. Polymers 2021, 13, 155. [Google Scholar] [CrossRef] [PubMed]
- Xenarios, S. Water at time of war. Nat. Sustain. 2023. [Google Scholar] [CrossRef]
- Xu, J.; Akhtar, M.; Haris, M.; Muhammad, S.; Abban, O.J.; Taghizadeh-Hesary, F. Energy crisis, firm profitability, and productivity: An emerging economy perspective. Energy Strategy Rev. 2022, 41, 100849. [Google Scholar] [CrossRef]
- Mofijur, M.; Mahlia, T.M.I.; Silitonga, A.S.; Ong, H.C.; Silakhori, M.; Hasan, M.H.; Putra, N.; Rahman, S.A. Phase change materials (PCM) for solar energy usages and storage: An overview. Energies 2019, 12, 3167. [Google Scholar] [CrossRef]
- Licht, S. Multiple band gap semiconductor/electrolyte solar energy conversion. J. Phys. Chem. B 2001, 105, 6281–6294. [Google Scholar] [CrossRef]
- Zou, C.; Zhao, Q.; Zhang, G.; Xiong, B. Energy revolution: From a fossil energy era to a new energy era. Nat. Gas Ind. B 2016, 3, 1–11. [Google Scholar] [CrossRef]
- Lai, C.S.; Jia, Y.; Lai, L.L.; Xu, Z.; McCulloch, M.D.; Wong, K.P. A comprehensive review on large-scale photovoltaic system with applications of electrical energy storage. Renew. Sustain. Energy Rev. 2017, 78, 439–451. [Google Scholar] [CrossRef]
- Ortiz-Rodríguez, L.A.; Hoehn, S.J.; Loredo, A.; Wang, L.; Xiao, H.; Crespo-Hernández, C.E. Electronic relaxation pathways in heavy-atom-free photosensitizers absorbing near-infrared radiation and exhibiting high yields of singlet oxygen generation. J. Am. Chem. Soc. 2021, 143, 2676–2681. [Google Scholar] [CrossRef]
- He, L.; Li, M.-X.; Chen, F.; Yang, S.-S.; Ding, J.; Ding, L.; Ren, N.-Q. Novel coagulation waste-based Fe-containing carbonaceous catalyst as peroxymonosulfate activator for pollutants degradation: Role of ROS and electron transfer pathway. J. Hazard. Mater. 2021, 417, 126113. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, W.; Liu, L.; Luo, S.; Zhang, C.; Yue, T.; Sun, J.; Zhu, M.; Wang, J. Work function mediated interface charge kinetics for boosting photocatalytic water sterilization. J. Hazard. Mater. 2023, 442, 130036. [Google Scholar] [CrossRef]
- Yu, W.; Zhao, L.; Chen, F.; Zhang, H.; Guo, L.-H. Surface bridge hydroxyl-mediated promotion of reactive oxygen species in different particle size TiO2 suspensions. J. Phys. Chem. Lett. 2019, 10, 3024–3028. [Google Scholar] [CrossRef]
- Islam, M.T.; Dominguez, A.; Alvarado-Tenorio, B.; Bernal, R.A.; Montes, M.O.; Noveron, J.C. Sucrose-mediated fast synthesis of zinc oxide nanoparticles for the photocatalytic degradation of organic pollutants in water. ACS Omega 2019, 4, 6560–6572. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Ghosh, R.; Adhikari, T.; Mukhopadhyay, S.; Chattopadhyay, A.; Pal, S.K. Development of Nanomedicine from Copper Mine Tailing Waste: A Pavement towards Circular Economy with Advanced Redox Nanotechnology. Catalysts 2023, 13, 369. [Google Scholar] [CrossRef]
- Huang, H.; Zhao, J.; Weng, B.; Lai, F.; Zhang, M.; Hofkens, J.; Roeffaers, M.B.; Steele, J.A.; Long, J. Site-Sensitive Selective CO2 Photoreduction to CO over Gold Nanoparticles. Angew. Chem. 2022, 134, e202204563. [Google Scholar]
- Li, J.; Lv, X.; Weng, B.; Roeffaers, M.B.; Jia, H. Engineering light propagation for synergetic photo-and thermocatalysis toward volatile organic compounds elimination. Chem. Eng. J. 2023, 461, 142022. [Google Scholar] [CrossRef]
- Ponseca, C.S., Jr.; Chabera, P.; Uhlig, J.; Persson, P.; Sundstrom, V. Ultrafast electron dynamics in solar energy conversion. Chem. Rev. 2017, 117, 10940–11024. [Google Scholar] [CrossRef]
- Zarate, X.; Schott-Verdugo, S.; Rodriguez-Serrano, A.; Schott, E. The nature of the donor motif in acceptor-bridge-donor dyes as an influence in the electron photo-injection mechanism in DSSCs. J. Phys. Chem. A 2016, 120, 1613–1624. [Google Scholar] [CrossRef]
- Karkosik, A.; Moro, A.J. An NIR Emissive Donor-π-Acceptor Dicyanomethylene-4 H-Pyran Derivative as a Fluorescent Chemosensor System towards Copper (II) Detection. Chemosensors 2022, 10, 343. [Google Scholar] [CrossRef]
- Joly, D.; Pellejà, L.; Narbey, S.; Oswald, F.; Chiron, J.; Clifford, J.N.; Palomares, E.; Demadrille, R. A robust organic dye for dye sensitized solar cells based on iodine/iodide electrolytes combining high efficiency and outstanding stability. Sci. Rep. 2014, 4, 4033. [Google Scholar] [CrossRef]
- Pan, N.; Ghosh, S.; Hasan, M.N.; Ahmed, S.A.; Chatterjee, A.; Patwari, J.; Bhattacharya, C.; Qurban, J.; Khder, A.S.; Pal, S.K. Plasmon-Coupled Donor–Acceptor Type Organic Sensitizer-Based Photoanodes for Enhanced Photovoltaic Activity: Key Information from Ultrafast Dynamical Study. Energy Fuels 2022, 36, 9272–9281. [Google Scholar] [CrossRef]
- Bureš, F. Fundamental aspects of property tuning in push–pull molecules. Rsc Adv. 2014, 4, 58826–58851. [Google Scholar] [CrossRef]
- Krishnan, R.; Saitoh, H.; Terada, H.; Centonze, V.; Herman, B. Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera. Rev. Sci. Instrum. 2003, 74, 2714–2721. [Google Scholar] [CrossRef]
- Komura, M.; Itoh, S. Fluorescence measurement by a streak camera in a single-photon-counting mode. Photosynth. Res. 2009, 101, 119–133. [Google Scholar] [CrossRef]
- Lakowicz, J. Principles of Fluorescence Spectroscopy, 2nd ed.; Kluwer Academic: New York, NY, USA, 1999; p. 5. [Google Scholar]
- Chaudhuri, S.; Sardar, S.; Bagchi, D.; Singha, S.S.; Lemmens, P.; Pal, S.K. Sensitization of an endogenous photosensitizer: Electronic spectroscopy of riboflavin in the proximity of semiconductor, insulator, and metal nanoparticles. J. Phys. Chem. A 2015, 119, 4162–4169. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Sardar, S.; Bagchi, D.; Dutta, S.; Debnath, S.; Saha, P.; Lemmens, P.; Pal, S.K. Photoinduced dynamics and toxicity of a cancer drug in proximity of inorganic nanoparticles under visible light. ChemPhysChem 2016, 17, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Umar, M.; Aziz, H.A. Photocatalytic degradation of organic pollutants in water. Org. Pollut.-Monit. Risk Treat. 2013, 8, 196–197. [Google Scholar]
- Hasan, M.N.; Bera, A.; Maji, T.K.; Mukherjee, D.; Pan, N.; Karmakar, D.; Pal, S.K. Functionalized nano-MOF for NIR induced bacterial remediation: A combined spectroscopic and computational study. Inorg. Chim. Acta 2022, 532, 120733. [Google Scholar] [CrossRef]
- El-Sherbiny, S.; Morsy, F.; Samir, M.; Fouad, O.A. Synthesis, characterization and application of TiO2 nanopowders as special paper coating pigment. Appl. Nanosci. 2014, 4, 305–313. [Google Scholar] [CrossRef]
- Wu, W.; Zhou, Y.; Li, J.; Wan, C. Shape memory and self-healing behavior of styrene-butadiene-styrene/ethylene-methacrylic acid copolymer (SBS/EMAA) elastomers containing ionic interactions. J. Appl. Polym. Sci. 2020, 137, 48666. [Google Scholar] [CrossRef]
- Chen, H.; Gong, Y.; Vázquez-Mayagoitia, A.l.; Zhang, J.; Cole, J.M. Dye Aggregation, Photostructural Reorganization and Multiple Concurrent Dye··· TiO2 Binding Modes in Dye-Sensitized Solar Cell Working Electrodes Containing Benzothiadiazole-Based Dye RK-1. ACS Appl. Energy Mater. 2019, 3, 423–430. [Google Scholar] [CrossRef]
- Maffeis, V.; Dogan, H.; Cassette, E.; Jousselme, B.; Gustavsson, T. Role of electronic relaxation in the injection process of organic push–pull dyes in complete dye-sensitized solar cells. J. Phys. Chem. Lett. 2019, 10, 5076–5081. [Google Scholar] [CrossRef] [PubMed]
- Patwari, J.; Chatterjee, A.; Sardar, S.; Lemmens, P.; Pal, S.K. Ultrafast dynamics in co-sensitized photocatalysts under visible and NIR light irradiation. Phys. Chem. Chem. Phys. 2018, 20, 10418–10429. [Google Scholar] [CrossRef] [PubMed]
Sample | Excitation Wavelength (nm) | Emission Wavelength (nm) | (ps) | (ps) | (ps) | (ps) |
---|---|---|---|---|---|---|
RK1 | 440 | 650 | 7.24 (54%) | 42.8 (46%) | _ | 23.56 |
Al2O3-RK1 | 440 | 650 | 28.32 (51%) | 579.4 (49%) | _ | 297.76 |
TiO2-RK1 | 440 | 550 | 10.00 (40%) | 31.57 (45%) | 523.26 (15%) | 95.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, N.; Roy, L.; Hasan, M.N.; Banerjee, A.; Ghosh, R.; Alsharif, M.A.; Asghar, B.H.; Obaid, R.J.; Chattopadhyay, A.; Das, R.; et al. Unraveling an Ultrafast Electron Transport Mechanism in a Photocatalytic “Micromachine” for Their Potential Light Harvesting Applications. Micromachines 2023, 14, 980. https://doi.org/10.3390/mi14050980
Pan N, Roy L, Hasan MN, Banerjee A, Ghosh R, Alsharif MA, Asghar BH, Obaid RJ, Chattopadhyay A, Das R, et al. Unraveling an Ultrafast Electron Transport Mechanism in a Photocatalytic “Micromachine” for Their Potential Light Harvesting Applications. Micromachines. 2023; 14(5):980. https://doi.org/10.3390/mi14050980
Chicago/Turabian StylePan, Nivedita, Lopamudra Roy, Md. Nur Hasan, Amrita Banerjee, Ria Ghosh, Meshari A. Alsharif, Basim H. Asghar, Rami J. Obaid, Arpita Chattopadhyay, Ranjan Das, and et al. 2023. "Unraveling an Ultrafast Electron Transport Mechanism in a Photocatalytic “Micromachine” for Their Potential Light Harvesting Applications" Micromachines 14, no. 5: 980. https://doi.org/10.3390/mi14050980
APA StylePan, N., Roy, L., Hasan, M. N., Banerjee, A., Ghosh, R., Alsharif, M. A., Asghar, B. H., Obaid, R. J., Chattopadhyay, A., Das, R., Ahmed, S. A., & Pal, S. K. (2023). Unraveling an Ultrafast Electron Transport Mechanism in a Photocatalytic “Micromachine” for Their Potential Light Harvesting Applications. Micromachines, 14(5), 980. https://doi.org/10.3390/mi14050980