Metallic and Non-Metallic Plasmonic Nanostructures for LSPR Sensors
Abstract
:1. Introduction
2. Basic Physics of LSPR Effect in Metallic and Non-Metallic Nanostructures
3. Application of LSPR Nanostructures for Surface-Enhanced Raman Spectroscopy (SERS)
3.1. Design of SERS Substrates
3.2. SERS Substrates Based on Non-Metallic 2D vdW Heterostructures
3.3. SERS Enabled by Combined Metallic and Non-Metallic LSPR Nanostructures
3.4. SERS Substrates with Both CM and EM Enhancement
4. Applications of LSPR Nanostructures in Photodetection
4.1. Implementation of LSPR Nanostructures to Promote Exciton–Plasmon Coupling
4.2. LSPR Enabled by Metallic Nanostructures for Enhanced Photoresponse
4.3. LSPR of Doped-Semiconductor NCs
5. Summary and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Aroca, R.F.; Alvarez-Puebla, R.A.; Pieczonka, N.; Sanchez-Cortez, S.; Garcia-Ramos, J.V. Surface-enhanced Raman scattering on colloidal nanostructures. Adv. Colloid Interface Sci. 2005, 116, 45–61. [Google Scholar] [CrossRef] [PubMed]
- Baker, G.A.; Moore, D.S. Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Anal. Bioanal. Chem. 2005, 382, 1751–1770. [Google Scholar] [CrossRef]
- Gunnarsson, L.; Bjerneld, E.J.; Xu, H.; Petronis, S.; Kasemo, B.; Käll, M. Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Appl. Phys. Lett. 2001, 78, 802–804. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Musick, M.D.; Nicewarner, S.R.; Salinas, F.G.; Benkovic, S.J.; Natan, M.J.; Keating, C.D. Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization. J. Am. Chem. Soc. 2000, 122, 9071–9077. [Google Scholar] [CrossRef]
- Kneipp, K.; Kneipp, H.; Kneipp, J. Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. Acc. Chem. Res. 2006, 39, 443–450. [Google Scholar] [CrossRef]
- Mayer, K.M.; Hafner, J.H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef]
- Petryayeva, E.; Krull, U.J. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. Anal. Chim. Acta 2011, 706, 8–24. [Google Scholar] [CrossRef]
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668–677. [Google Scholar] [CrossRef]
- Willets, K.A.; Van Duyne, R.P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Gogol, P.; Cambril, E.; Palpant, B. Near- and Far-Field Effects on the Plasmon Coupling in Gold Nanoparticle Arrays. J. Phys. Chem. C 2012, 116, 24741–24747. [Google Scholar] [CrossRef]
- Luther, J.M.; Jain, P.K.; Ewers, T.; Alivisatos, A.P. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 2011, 10, 361–366. [Google Scholar] [CrossRef]
- Li, Y.; Ferreyra, P.; Swan, A.K.; Paiella, R. Current-Driven Terahertz Light Emission from Graphene Plasmonic Oscillations. ACS Photonics 2019, 6, 2562–2569. [Google Scholar] [CrossRef]
- Tene, T.; Guevara, M.; Svozilík, J.; Coello-Fiallos, D.; Briceño, J.; Vacacela Gomez, C. Proving Surface Plasmons in Graphene Nanoribbons Organized as 2D Periodic Arrays and Potential Applications in Biosensors. Chemosensors 2022, 10, 514. [Google Scholar] [CrossRef]
- Aroca, R. Surface Enhanced Vibrational Spectroscopy; Wiley: Hoboken, NJ, USA, 2006; p. xxv. 233p. [Google Scholar]
- Fang, Y.; Seong, N.H.; Dlott, D.D. Measurement of the Distribution of Site Enhancements in Surface-Enhanced Raman Scattering. Science 2008, 321, 388–392. [Google Scholar] [CrossRef]
- Lin, H.X.; Li, J.M.; Liu, B.J.; Liu, D.Y.; Liu, J.; Terfort, A.; Xie, Z.X.; Tian, Z.Q.; Ren, B. Uniform gold spherical particles for single-particle surface-enhanced Raman spectroscopy. Phys. Chem. Chem. Phys. 2013, 15, 4130–4135. [Google Scholar] [CrossRef] [Green Version]
- Potara, M.; Baia, M.; Farcau, C.; Astilean, S. Chitosan-coated anisotropic silver nanoparticles as a SERS substrate for single-molecule detection. Nanotechnology 2012, 23, 055501. [Google Scholar] [CrossRef]
- Sivashanmugan, K.; Liao, J.D.; Liu, B.H.; Yao, C.K. Focused-Ion-Beam-Fabricated Au Nanorods Coupled with Ag Nanoparticles Used as Surface-Enhanced Raman Scattering-Active Substrate for Analyzing Trace Melamine Constituents in Solution. Anal. Chim. Acta 2013, 800, 56–64. [Google Scholar] [CrossRef]
- Li, X.; Wu, J.; Mao, N.; Zhang, J.; Lei, Z.; Liu, Z.; Xu, H. A self-powered graphene–MoS2 hybrid phototransistor with fast response rate and high on–off ratio. Carbon 2015, 92, 126–132. [Google Scholar] [CrossRef]
- Huh, S.; Park, J.; Kim, Y.S.; Kim, K.S.; Hong, B.H.; Nam, J.M. UV/ozone-Oxidized Large-Scale Graphene Platform with Large Chemical Enhancement in Surface-Enhanced Raman Scattering. ACS Nano 2011, 5, 9799–9806. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wu, M.; Xiao, C.; Yu, Y.; Liu, X.; Qiu, G. Urchin-like LaVO(4)/Au composite microspheres for surface-enhanced Raman scattering detection. J. Colloid Interface Sci. 2015, 443, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Goul, R.; Das, S.; Liu, Q.; Xin, M.; Lu, R.; Hui, R.; Wu, J.Z. Quantitative Analysis of Surface Enhanced Raman Spectroscopy of Rhodamine 6G Using a Composite Graphene and Plasmonic Au Nanoparticle Substrate. Carbon 2017, 111, 386–392. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, S.Z.; Huo, Y.Y.; Liu, A.H.; Xu, S.C.; Liu, X.Y.; Sun, Z.C.; Xu, Y.Y.; Li, Z.; Man, B.Y. SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure. Opt. Express 2015, 23, 24811–24821. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, L.; Graham, D. Molecularly-Mediated Assemblies of Plasmonic Nanoparticles for Surface-Enhanced Raman Spectroscopy Applications. Chem. Soc. Rev. 2012, 41, 7085–7107. [Google Scholar] [CrossRef]
- Mu, C.; Zhang, J.P.; Xu, D. Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering. Nanotechnology 2010, 21, 015604. [Google Scholar] [CrossRef]
- Markéta Bocková, Jiří Slabý, Tomáš Špringer, and Jiří Homola, Advances in Surface Plasmon Resonance Imaging and Microscopy and Their Biological Applications. Annu. Rev. Anal. Chem. 2019, 12, 151–176. [CrossRef]
- Atwater, H.A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213. [Google Scholar] [CrossRef]
- Ling, X.; Xie, L.; Fang, Y.; Xu, H.; Zhang, H.; Kong, J.; Dresselhaus, M.S.; Zhang, J.; Liu, Z. Can Graphene be Used as a Substrate for Raman Enhancement? Nano Lett. 2010, 10, 553–561. [Google Scholar] [CrossRef]
- Xu, W.; Ling, X.; Xiao, J.; Dresselhaus, M.S.; Kong, J.; Xu, H.; Liu, Z.; Zhang, J. Surface Enhanced Raman Spectroscopy on a Flat Graphene Surface. Proc. Natl. Acad. Sci. USA 2012, 109, 9281–9286. [Google Scholar] [CrossRef]
- Xu, W.; Mao, N.; Zhang, J. Graphene: A Platform for Surface-Enhanced Raman Spectroscopy. Small 2013, 9, 1206–1224. [Google Scholar] [CrossRef]
- Tan, Y.; Ma, L.; Gao, Z.; Chen, M.; Chen, F. Two-Dimensional Heterostructure as a Platform for Surface-Enhanced Raman Scattering. Nano Lett. 2017, 17, 2621–2626. [Google Scholar] [CrossRef]
- Ling, X.; Moura, L.G.; Pimenta, M.A.; Zhang, J. Charge-Transfer Mechanism in Graphene-Enhanced Raman Scattering. J. Phys. Chem. C 2012, 116, 25112–25118. [Google Scholar] [CrossRef]
- Xie, L.; Ling, X.; Fang, Y.; Zhang, J.; Liu, Z. Graphene as a Substrate to Suppress Fluorescence in Resonance Raman Spectroscopy. J. Am. Chem. Soc. 2009, 131, 9890–9891. [Google Scholar] [CrossRef]
- Xu, W.; Xiao, J.; Chen, Y.; Chen, Y.; Ling, X.; Zhang, J. Graphene-veiled gold substrate for surface-enhanced Raman spectroscopy. Adv. Mater. 2013, 25, 928–933. [Google Scholar] [CrossRef]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Choi, W.; Choudhary, N.; Han, G.H.; Park, J.; Akinwande, D.; Lee, Y.H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116–130. [Google Scholar] [CrossRef]
- Lu, R.; Konzelmann, A.; Xu, F.; Gong, Y.; Liu, J.; Liu, Q.; Xin, M.; Hui, R.; Wu, J.Z. High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates. Carbon 2015, 86, 78–85. [Google Scholar] [CrossRef]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Ghopry, S.A.; Alamri, M.A.; Goul, R.; Sakidja, R.; Wu, J.Z. Extraordinary Sensitivity of Surface-Enhanced Raman Spectroscopy of Molecules on MoS2 (WS2) Nanodomes/Graphene van der Waals Heterostructure Substrates. Adv. Opt. Mater. 2019, 7, 1801249. [Google Scholar] [CrossRef]
- Liu, Q.; Gong, Y.; Wilt, J.S.; Sakidja, R.; Wu, J. Synchronous growth of AB-stacked bilayer graphene on Cu by simply controlling hydrogen pressure in CVD process. Carbon 2015, 93, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Ghopry, S.A.; Sadeghi, S.M.; Berrie, C.L.; Wu, J.Z. MoS2 Nanodonuts for High-Sensitivity Surface-Enhanced Raman Spectroscopy. Biosensors 2021, 11, 477. [Google Scholar] [CrossRef] [PubMed]
- Ghopry, S.A.; Sadeghi, S.M.; Farhat, Y.; Berrie, C.L.; Alamri, M.; Wu, J.Z. Intermixed WS2+MoS2 Nanodisks/Graphene van der Waals Heterostructures for Surface-Enhanced Raman Spectroscopy Sensing. ACS Appl. Nano Mater. 2021, 4, 2941–2951. [Google Scholar] [CrossRef]
- Gamucci, A.; Spirito, D.; Carrega, M.; Karmakar, B.; Lombardo, A.; Bruna, M.; Pfeiffer, L.N.; West, K.W.; Ferrari, A.C.; Polini, M.; et al. Anomalous Low-Temperature Coulomb drag in Graphene-GaAs Heterostructures. Nat. Commun. 2014, 5, 5824–5827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgiou, T.; Jalil, R.; Belle, B.D.; Britnell, L.; Gorbachev, R.V.; Morozov, S.V.; Kim, Y.J.; Gholinia, A.; Haigh, S.J.; Makarovsky, O.; et al. Vertical Field-Effect Transistor based on Graphene-WS2 Heterostructures for Flexible and Transparent Electronics. Nat. Nanotechnol. 2013, 8, 100–103. [Google Scholar] [CrossRef]
- Levendorf, M.P.; Kim, C.J.; Brown, L.; Huang, P.Y.; Havener, R.W.; Muller, D.A.; Park, J. Graphene and Boron Ntride Lateral Heterostructures for Atomically Thin Circuitry. Nature 2012, 488, 627–632. [Google Scholar] [CrossRef]
- Ma, Y.; Dai, Y.; Guo, M.; Niu, C.; Huang, B. Graphene adhesion on MoS2 monolayer: An ab initio study. Nanoscale 2011, 3, 3883–3887. [Google Scholar] [CrossRef]
- Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T.P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826–830. [Google Scholar] [CrossRef]
- Gong, M.; Sakidja, R.; Liu, Q.; Goul, R.; Ewing, D.; Casper, M.; Stramel, A.; Elliot, A.; Wu, J.Z. Broadband Photodetectors Enabled by Localized Surface Plasmonic Resonance in Doped Iron Pyrite Nanocrystals. Adv. Opt. Mater. 2018, 6, 1701241. [Google Scholar] [CrossRef]
- Faucheaux, J.A.; Stanton, A.L.D.; Jain, P.K. Plasmon Resonances of Semiconductor Nanocrystals: Physical Principles and New Opportunities. J. Chem. Lett. 2014, 20, 976–985. [Google Scholar] [CrossRef]
- Xu, S.; Jiang, S.; Wang, J.; Wei, J.; Yue, W.; Ma, Y. Graphene Isolated Au Nanoparticle Arrays with High Reproducibility for High-Performance Surface-Enhanced Raman Scattering. Sens. Actuators B Chem. 2016, 222, 1175–1183. [Google Scholar] [CrossRef]
- Ghopry, S.A.; Alamri, M.; Goul, R.; Cook, B.; Sadeghi, S.M.; Gutha, R.R.; Sakidja, R.; Wu, J.Z. Au Nanoparticle/WS2 Nanodome/Graphene van der Waals Heterostructure Substrates for Surface-Enhanced Raman Spectroscopy. ACS Appl. Nano Mater. 2020, 3, 2354–2363. [Google Scholar] [CrossRef]
- Alamri, M.; Sakidja, R.; Goul, R.; Ghopry, S.; Wu, J.Z. Plasmonic Au Nanoparticles on 2D MoS2/Graphene van der Waals Heterostructures for High-Sensitivity Surface-Enhanced Raman Spectroscopy. ACS Appl. Nano Mater. 2019, 2, 1412–1420. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, F. Large-scale highly ordered periodic Au nano-discs/graphene and graphene/Au nanoholes plasmonic substrates for surface-enhanced Raman scattering. Nano Res. 2019, 12, 2788–2795. [Google Scholar] [CrossRef]
- Xu, G.; Liu, J.; Wang, Q.; Hui, R.; Chen, Z.; Maroni, V.A.; Wu, J. Plasmonic Graphene Transparent Conductors. Adv. Mater. 2012, 24, OP71–OP76. [Google Scholar] [CrossRef]
- Wu, J.; Ghopry, S. Optimization of SERS Setup for High Efficiency, Rapid Detection of Infectious Diseases. InSERS-Based Advanced Diagnostics for Infectious Diseases; IOP Publishing: Bristol, UK, 2023; pp. 11-1–11-22. ISBN 978-0-7503-5920-7. [Google Scholar] [CrossRef]
- Chen, P.X.; Qiu, H.W.; Xu, S.C.; Liu, X.Y.; Li, Z.; Hu, L.T.; Li, C.H.; Guo, J.; Jiang, S.Z.; Huo, Y.Y. A Novel Surface-Enhanced Raman Spectroscopy Substrate based on a Large Area of MoS2 and Ag Nanoparticles Hybrid System. Appl. Surf. Sci. 2016, 375, 207–214. [Google Scholar] [CrossRef]
- Shorie, M.; Kumar, V.; Kaur, H.; Singh, K.; Tomer, V.K.; Sabherwal, P. Plasmonic DNA hotspots made from tungsten disulfide nanosheets and gold nanoparticles for ultrasensitive aptamer-based SERS detection of myoglobin. Microchim. Acta 2018, 185, 158. [Google Scholar] [CrossRef]
- Wu, J.Z. Graphene. In Transparent Conductive Materials. Materials, Synthesis and Characterization; Castellón, E., Levy, D., Eds.; Wiley-VCH: Weinheim, Germany, 2019; Volume 1–2, pp. 165–192. [Google Scholar]
- Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F.P.G.; Gatti, F.; Koppens, F.H.L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368. [Google Scholar] [CrossRef]
- Wu, J.; Gong, M. QDs/graphene nanohybrid photodetectors: Progress and perspective. IOP Nano Express 2021, 2, 031002. [Google Scholar] [CrossRef]
- Wu, J.; Gong, M. Perspectives: ZnO/graphene heterostructures nanohybrids for optoelectronics and sensors. J. Appl. Phys. 2021, 130, 070905. [Google Scholar] [CrossRef]
- Shultz, A.; Liu, B.; Gong, M.; Alamri, M.; Walsh, M.; Schmitz, R.; Wu, J.Z. Development of Flexible Broadband PbS Quantum Dots/Graphene Photodetector Array with High-speed Readout Circuits. ACS Appl. Nano Mater. 2022, 5, 11. [Google Scholar] [CrossRef]
- Ra, H.-S.; Lee, S.-H.; Jeong, S.-J.; Cho, S.; Lee, J.-S. Advances in Heterostructures for Optoelectronic Devices: Materials, Properties, Conduction Mechanisms, Device Applications. Small Methods 2023, 2300245. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Zhang, Y.; Wei, X.; Jiang, M.; Xu, H. The rise of two-dimensional tellurium for next-generation electronics and optoelectronics. Front. Phys. 2023, 18, 33601. [Google Scholar] [CrossRef]
- Sadeghi, S.M.; Wu, J.Z. Field/valley plasmonic meta-resonances in WS2-metallic nanoantenna systems: Coherent dynamics for molding plasmon fields and valley polarization. Phys. Rev. B 2022, 105, 035426. [Google Scholar] [CrossRef]
- Wan, X.; Pan, Y.; Xu, Y.; Liu, J.; Chen, H.; Pan, R.; Zhao, Y.; Su, P.; Li, Y.; Zhang, X.; et al. Ultralong Lifetime of Plasmon-Excited Electrons Realized in Nonepitaxial/Epitaxial Au@CdS/CsPbBr3 Triple-Heteronanocrystals. Adv. Mater. 2023, 35, 2207555. [Google Scholar] [CrossRef]
- Wu, J.; Gong, M. Nanohybrid Photodetectors. Adv. Photonics Res. 2021, 2, 2100015. [Google Scholar] [CrossRef]
- Sayyad, U.S.; Burai, S.; Bhatt, H.; Ghosh, H.N.; Mondal, S. Efficient Charge Transfer in the Perovskite Quantum Dot–Hemin Biocomposite: Is This Effective for Optoelectronic Applications? J. Phys. Chem. Lett. 2023, 14, 5397–5402. [Google Scholar] [CrossRef]
- Gong, M.; Liu, Q.; Cook, B.; Ewing, D.; Casper, M.; Stramel, A.; Wu, J. All-printable ZnO quantum dots/Graphene van der Waals heterostructures for ultrasensitive detection of ultraviolet light. ACS Nano 2017, 11, 4114. [Google Scholar] [CrossRef]
- Gong, M.; Liu, Q.; Goul, R.; Ewing, D.; Casper, M.; Stramel, A.; Elliot, A.; Wu, J.Z. Printable Nanocomposite FeS2-PbS Nanocrystals/Graphene Heterojunction Photodetectors for Broadband Photodetection. ACS Appl. Mater. Interfaces 2017, 9, 27801–27808. [Google Scholar] [CrossRef]
- Gong, M.G.; Sakidja, R.; Goul, R.; Ewing, D.; Casper, M.; Stramel, A.; Elliot, A.; Wu, J.Z. High-Performance All-Inorganic CsPbCl3 Perovskite Nanocrystal Photodetectors with Superior Stability. ACS Nano 2019, 13, 1772–1783. [Google Scholar] [CrossRef]
- Gong, M.; Ewing, D.; Casper, M.; Stramel, A.; Elliot, A.; Wu, J.Z. Controllable Synthesis of Monodispersed Fe1- xS2 Nanocrystals for High-Performance Optoelectronic Devices. ACS Appl. Mater. Interfaces 2019, 11, 19286–19293. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.P.; Adhikaru, P.; Liu, Q.F.; Wang, T.; Gong, M.G.; Chan, W.L.; Ching, W.Y.; Wu, J.Z. Designing the Interface of Carbon Nanotube/Biomaterials for High-Performance Ultra-Broadband Photodetection. ACS Appl. Mater. & Interf. 2017, 9, 11016. [Google Scholar] [CrossRef]
- Cook, B.; Liu, Q.F.; Liu, J.W.; Gong, M.G.; Ewing, D.; Casper, M.; Stramel, A.; Wu, J.D. Facile zinc oxide nanowire growth on graphene via a hydrothermal floating method: Towards Debye length radius nanowires for ultraviolet photodetection. J. Mater. Chem. C 2017, 5, 10087–10093. [Google Scholar] [CrossRef]
- Liu, J.; Lu, R.; Xu, G.; Wu, J.; Thapa, P.; Moore, D. Development of a Seedless Floating Growth Process in Solution for Synthesis of Crystalline ZnO Micro/Nanowire Arrays on Graphene: Towards High-Performance Nanohybrid Ultraviolet Photodetectors. Adv. Funct. Mater. 2013, 23, 4941–4948. [Google Scholar] [CrossRef]
- Xia, F.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899–907. [Google Scholar] [CrossRef] [Green Version]
- Zahra Sheykhifar and Seyed Majid Mohseni. Highly light-tunable memristors in solution-processed 2D materials/metal composites. Sci. Rep. 2022, 12, 18771. [Google Scholar] [CrossRef] [PubMed]
- Martyniuk, P.; Kopytko, M.; Rogalski, A. Infrared Detector Characterization. In Antimonide-Based Infrared Detectors: A New Perspective; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Eustis, S.; El-Sayed, M.A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006, 35, 209–217. [Google Scholar] [CrossRef]
- Cortie, M.B.; McDonagh, A.M. Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem. Rev. 2011, 111, 3713–3735. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.H.; Ren, F.; Zhou, X.D.; Peng, T.C.; Wu, W.; Peng, X.N.; Yu, X.F.; Jiang, C.Z. Surface plasmon-enhanced light emission using silver nanoparticles embedded in ZnO. Appl. Phys. Lett. 2010, 97, 071909. [Google Scholar] [CrossRef]
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer Science & Business Media: Berlin, Germany, 2007; pp. 65–87. [Google Scholar]
- Stiles, P.L.; Dieringer, J.A.; Shah, N.C.; Van Duyne, R.P. Surface-Enhanced Raman Spectroscopy. Annu. Rev. Anal. Chem. 2018, 1, 601–626. [Google Scholar] [CrossRef] [Green Version]
- Wiederrecht, G. Handbook of Nanoscale Optics and Electronics; Academic Press: Cambridge, MA, USA, 2009; p. 309. [Google Scholar]
- Gutha, R.R.; Sadeghi, S.M.; Wing, W.J. Ultrahigh refractive index sensitivity and tunable polarization switching via infrared plasmonic lattice modes. Appl. Phys. Lett. 2017, 110, 153103. [Google Scholar] [CrossRef]
- Gutha, R.R.; Sadeghi, S.M.; Hatef, A.; Sharp, C.; Lin, Y.B. Ultrahigh refractive index sensitivity via lattice-induced meta-dipole modes in flat metallic nanoantenna arrays. Appl. Phys. Lett. 2018, 112, 223102. [Google Scholar] [CrossRef]
- Sun, Z.; Aigouy, L.; Chen, Z. Plasmonic-enhanced perovskite-graphene hybrid photodetectors. Nanoscale 2016, 8, 7377–7383. [Google Scholar] [CrossRef]
- Wang, H.; Lim, J.W.; Quan, L.N.; Chung, K.; Jang, Y.J.; Ma, Y.; Kim, D.H. Perovskite-Gold Nanorod Hybrid Photodetector with High Responsivity and Low Driving Voltage. Adv. Opt. Mater. 2018, 6, 1701397. [Google Scholar] [CrossRef]
- Rai, P. Plasmonic noble metal@metal oxide core–shell nanoparticles for dye-sensitized solar cell applications. Sustain. Energy Fuels 2019, 3, 63–91. [Google Scholar] [CrossRef]
- Yip, C.T.; Liu, X.L.; Hou, Y.D.; Xie, W.; He, J.J.; Schlucker, S.; Lei, D.Y.; Huang, H.T. Strong competition between electromagnetic enhancement and surface-energy-transfer induced quenching in plasmonic dye-sensitized solar cells: A generic yet controllable effect. Nano Energy 2016, 26, 297–304. [Google Scholar] [CrossRef]
- Liu, S.; Hou, Y.; Xie, W.; Schlucker, S.; Yan, F.; Lei, D.Y. Quantitative Determination of Contribution by Enhanced Local Electric Field, Antenna-Amplified Light Scattering, and Surface Energy Transfer to the Performance of Plasmonic Organic Solar Cells. Small 2018, 14, e1800870. [Google Scholar] [CrossRef]
- Liu, B.; Gutha, R.R.; Kattel, B.; Alamri, M.; Gong, M.; Sadeghi, S.M.; Chan, W.L.; Wu, J.Z. Using Silver Nanoparticles-Embedded Silica Metafilms as Substrates to Enhance the Performance of Perovskite Photodetectors. ACS Appl. Mater. Interfaces 2019, 11, 32301–32309. [Google Scholar] [CrossRef]
- Gong, M.; Alamri, M.; Ewing, D.; Sadeghi, S.M.; Wu, J.Z. Localized Surface Plasmon Resonance Enhanced Light Absorption in AuCu/CsPbCl3 Core/Shell Nanocrystals. Adv. Mater. 2020, 32, 2002163. [Google Scholar] [CrossRef]
- Alamri, M.; Liu, B.; Sadeghi, S.M.; Ewing, D.; Wilson, A.; Doolin, J.L.; Berrie, C.L.; Wu, J. Graphene/WS2 Nanodisk Van der Waals Heterostructures on Plasmonic Ag Nanoparticle-Embedded Silica Metafilms for High-Performance Photodetectors. ACS Appl. Nano Mater. 2020, 3, 7858–7868. [Google Scholar] [CrossRef]
- Gu, Q.; Hu, C.; Yang, J.; Lv, J.; Ying, Y.; Jiang, X.; Si, G. Plasmon enhanced perovskite-metallic photodetectors. Mater. Des. 2021, 198, 109374. [Google Scholar] [CrossRef]
- Yu, L.; Lu, L.; Zeng, L.; Yan, X.; Ren, X.; Wu, J.Z. Double Ag Nanowires on a Bilayer MoS2 Flake for Surface-Enhanced Raman Scattering. J. Phys. Chem. C. 2021, 125, 1940–1946. [Google Scholar] [CrossRef]
- Ye, X.; Zheng, C.; Chen, J.; Gao, Y.; Murray, C.B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 2013, 13, 765–771. [Google Scholar] [CrossRef]
- Huang, L.; Tu, C.-C.; Lin, L.Y. Colloidal quantum dot photodetectors enhanced by self-assembled plasmonic nanoparticles. Appl. Phys. Lett. 2011, 98, 113110. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; DiStefano, J.G.; Murthy, A.A.; Cain, J.D.; Hanson, E.D.; Li, Q.; Castro, F.C.; Chen, X.; Dravid, V.P. Superior Plasmonic Photodetectors Based on Au@MoS(2) Core-Shell Heterostructures. ACS Nano 2017, 11, 10321–10329. [Google Scholar] [CrossRef]
- Lu, J.; Xu, C.; Dai, J.; Li, J.; Wang, Y.; Lin, Y.; Li, P. Improved UV photoresponse of ZnO nanorod arrays by resonant coupling with surface plasmons of Al nanoparticles. Nanoscale 2015, 7, 3396–3403. [Google Scholar] [CrossRef]
- Wang, D.-D.; Ge, C.-W.; Wu, G.-A.; Li, Z.-P.; Wang, J.-Z.; Zhang, T.-F.; Yu, Y.-Q.; Luo, L.-B. A sensitive red light nano-photodetector propelled by plasmonic copper nanoparticles. J. Mater. Chem. C 2017, 5, 1328–1335. [Google Scholar] [CrossRef]
- Zandi, O.; Agrawal, A.; Shearer, A.B.; Reimnitz, L.C.; Dahlman, C.J.; Staller, C.M.; Milliron, D.J. Impacts of surface depletion on the plasmonic properties of doped semiconductor nanocrystals. Nat. Mater. 2018, 17, 710–717. [Google Scholar] [CrossRef]
- Dorfs, D.; Hartling, T.; Miszta, K.; Bigall, N.C.; Kim, M.R.; Genovese, A.; Falqui, A.; Povia, M.; Manna, L. Reversible tunability of the near-infrared valence band plasmon resonance in Cu(2-x)Se nanocrystals. J. Am. Chem. Soc. 2011, 133, 11175–11180. [Google Scholar] [CrossRef]
- Agrawal, A.; Cho, S.H.; Zandi, O.; Ghosh, S.; Johns, R.W.; Milliron, D.J. Localized Surface Plasmon Resonance in Semiconductor Nanocrystals. Chem. Rev. 2018, 118, 3121–3207. [Google Scholar] [CrossRef]
- Cook, B.; Gong, M.G.; Ewing, D.; Casper, M.; Stramel, A.; Elliot, A.; Wu, J.Z. Inkjet-Printing Multi-Color Pixilated Quantum Dots on Graphene for Broadband Photodetection. ACS Appl. Nano. Mater. 2019, 2, 3246. [Google Scholar] [CrossRef]
- Sun, T.; Wang, Y.; Yu, W.; Wang, Y.; Dai, Z.; Liu, Z.; Shivananju, B.N.; Zhang, Y.; Fu, K.; Shabbir, B.; et al. Flexible Broadband Graphene Photodetectors Enhanced by Plasmonic Cu(3-)(x) P Colloidal Nanocrystals. Small 2017, 13, 1701881. [Google Scholar] [CrossRef]
- Li, Y.; Murthy, A.A.; DiStefano, J.G.; Jung, H.J.; Hao, S.; Villa, C.J.; Wolverton, C.; Chen, X.; Dravid, V.P. MoS2-capped CuxS nanocrystals: A new heterostructured geometry of transition metal dichalcogenides for broadband optoelectronics. Mater. Horiz. 2019, 6, 587–594. [Google Scholar] [CrossRef]
- Min, B.K.; Nguyen, V.T.; Kim, S.J.; Yi, Y.; Choi, C.G. Surface Plasmon Resonance-Enhanced Near-Infrared Absorption in Single-Layer MoS(2) with Vertically Aligned Nanoflakes. ACS Appl. Mater. Interfaces 2020, 12, 14476–14483. [Google Scholar] [CrossRef]
- Sarkar, S.S.; Bera, S.; Hassan, M.S.; Sapra, S.; Khatri, R.K.; Ray, S.K. MoSe2–Cu2–xS/GaAs Heterostructure-Based Self-Biased Two Color-Band Photodetectors with High Detectivity. J. Phys. Chem. C 2021, 125, 10768–10776. [Google Scholar] [CrossRef]
Substrates Materials | SERS Substrates Design | Enhancement Factor | Sensitivity | Excitation Wavelength | Ref. |
---|---|---|---|---|---|
AuNPs/graphene | Metallic LSPR | - | 8 × 10−7 M | 633 nm | [24] |
graphene/AuNPs | Metallic LSPR | 4.8 × 107 (EM + CM) | 10−11 M | 532 nm | [52] |
MoS2/AgNPs | Metallic LSPR | 3.75 × 104 (EM + CM) | 10−9 M | 532 nm | [58] |
AuNP/WS2 | Metallic LSPR | 6.78 × 106 (EM + CM) | 1 × 10−8 M | 532 nm | [59] |
AuNPs/graphene | Metallic LSPR | 4, compare to SERS on AuNP (EM + CM) | - | 633 nm | [39] |
AuNPs/graphene | Metallic LSPR | - | 8 × 10−7 M | 633 nm | [24] |
AuNPs/MoS2 (continuous)/graphene | Metallic LSPR | - | 5 × 10−10 M 5 × 10−8 M | 532 nm 633 nm | [54] |
WS2 N-disc/graphene | Non-metallic LSPR | ~8, compared to SERS on WS2 continuous layer and a graphene single layer (EM + CM) | 5 × 10−11 M | 532 nm | [41] |
MoS2 N-disc/graphene | Non-metallic LSPR | ~9, compared to SERS on MoS2 continuous layer and a graphene single layer (EM + CM) | 5 × 10−12 M | 532 nm | [41] |
MoS2+WS2 N-disc/graphene | Non-metallic LSPR | 14–17, compared to SERS on graphene single layer (EM + CM) | 7 × 10−13 M | 532 nm | [44] |
AuNP/WS2 N-disc/graphene | Metallic and non-metallic LSPR | 12.2, compared to on graphene | 10−12 M | 532 nm | [53] |
MoS2 N-donut/graphene | Non-metallic LSPR | ~20 compared to on graphene | 2 × 10−12 M | 532 nm | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.Z.; Ghopry, S.A.; Liu, B.; Shultz, A. Metallic and Non-Metallic Plasmonic Nanostructures for LSPR Sensors. Micromachines 2023, 14, 1393. https://doi.org/10.3390/mi14071393
Wu JZ, Ghopry SA, Liu B, Shultz A. Metallic and Non-Metallic Plasmonic Nanostructures for LSPR Sensors. Micromachines. 2023; 14(7):1393. https://doi.org/10.3390/mi14071393
Chicago/Turabian StyleWu, Judy Z., Samar Ali Ghopry, Bo Liu, and Andrew Shultz. 2023. "Metallic and Non-Metallic Plasmonic Nanostructures for LSPR Sensors" Micromachines 14, no. 7: 1393. https://doi.org/10.3390/mi14071393
APA StyleWu, J. Z., Ghopry, S. A., Liu, B., & Shultz, A. (2023). Metallic and Non-Metallic Plasmonic Nanostructures for LSPR Sensors. Micromachines, 14(7), 1393. https://doi.org/10.3390/mi14071393