All-Optical Rapid Formation, Transport, and Sustenance of a Sessile Droplet in a Two-Dimensional Slit with Few-Micrometer Separation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grier, D.G. A revolution in optical manipulation. Nature 2003, 424, 810–816. [Google Scholar] [CrossRef]
- Jonáš, A.; Zemánek, P. Light at work: The use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis 2008, 29, 4813–4851. [Google Scholar] [CrossRef]
- Dienerowitz, M.; Mazilu, M.; Dholakia, K. Optical manipulation of nanoparticles: A review. J. Nanophoton. 2008, 2, 021875. [Google Scholar] [CrossRef] [Green Version]
- Maragò, M.; Jones, P.H.; Gucciardi, P.G.; Volpe, G.; Ferrari, A.C. Optical trapping and manipulation of nanostructures. Nat. Nanotech. 2013, 8, 807–819. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Zhao, C.; Miao, X.; Zhao, Y.; Rufo, J.; Liu, Y.J.; Huang, T.J.; Zheng, Y. Plasmofluidics: Merging Light and Fluids at the Micro-/Nanoscale. Small 2015, 11, 4423–4444. [Google Scholar] [CrossRef] [Green Version]
- Chiou, P.Y.; Ohta, A.T.; Wu, M.C. Massively parallel manipulation of single cells and microparticles using optical images. Nature 2005, 436, 370–372. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Peng, X.; Wei, X.; Mao, Z.; Xie, C.; Zheng, Y. Thermophoretic Tweezers for Low-Power and Versatile Manipulation of Biological Cells. ACS Nano 2017, 11, 3147–3154. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, T.S.; Garstecki, P. Controlled droplet microfluidic systems for multistep chemical and biological assays. Chem. Soc. Rev. 2017, 46, 6210–6226. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Hill, E.H.; Peng, X.; Zheng, Y. Optothermal Manipulations of Colloidal Particles and Living Cells. Acc. Chem. Res. 2018, 51, 1465–1474. [Google Scholar] [CrossRef] [PubMed]
- Ashkin, A. History of optical trapping and manipulation of small-neutral particle, atoms, and molecules. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 841–856. [Google Scholar] [CrossRef]
- Yuyama, K.; Rungsimanon, T.; Sugiyama, T.; Masuhara, H. Formation, Dissolution, and Transfer Dynamics of a Millimeter-Scale Thin Liquid Droplet in Glycine Solution by Laser Trapping. J. Phys. Chem. C 2012, 116, 6809–6816. [Google Scholar] [CrossRef]
- Ouenzerfi, S.; Harmand, S. Experimental Droplet Study of Inverted Marangoni Effect of a Binary Liquid Mixture on a Nonuniform Heated Substrate. Langmuir 2016, 32, 2378–2388. [Google Scholar] [CrossRef]
- Ichimura, K.; Oh, S.-K.; Nakagawa, M. Light-Driven Motion of Liquids on a Photoresponsive Surface. Science 2000, 288, 1624–1626. [Google Scholar] [CrossRef] [Green Version]
- Malinowski, R.; Parkin, I.P.; Volpe, G. Nonmonotonic contactless manipulation of binary droplets via sensing of localized vapor sources on pristine substrates. Sci. Adv. 2020, 6, eaba3636. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Li, H.; Li, Z.; Zhao, Z.; Li, K.; Li, M.; Song, Y. Programmable droplet manipulation by a magnetic-actuated robot. Sci. Adv. 2020, 6, eaay5808. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Li, B.; Xu, Y.; Mehrizi, A.A.; Chen, L. Effective Strategies for Droplet Transport on Solid Surfaces. Adv. Mater. Interf. 2020, 8, 2001441. [Google Scholar] [CrossRef]
- Dai, Q.; Huang, W.; Wang, X.; Khonsari, M.M. Directional interfacial motion of liquids: Fundamentals, evaluations, and manipulation strategies. Tribol. Int. 2021, 154, 106749. [Google Scholar] [CrossRef]
- Chiou, P.-Y.; Chang, Z.; Wu, M.C. Droplet Manipulation With Light on Optoelectrowetting Device. J. Microelectromech. Sys. 2008, 17, 133–138. [Google Scholar] [CrossRef]
- Fan, B.; Li, F.; Chen, L.; Shi, L.; Yan, W.; Zhang, Y.; Li, S.; Wang, X.; Wang, X.; Chen, H. Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3 Substrate. Phys. Rev. Appl. 2017, 7, 064010. [Google Scholar] [CrossRef]
- Muñoz-Cortés, E.; Puerto, A.; Blázquez-Castro, A.; Arizmendi, L.; Bella, J.L.; López-Fernández, C.; Carrascosa, M.; García-Cabañes, A. Optoelectronic generation of bio-aqueous femto-droplets based on the bulk photovoltaic effect. Opt. Lett. 2020, 45, 1164–1167. [Google Scholar] [CrossRef] [PubMed]
- Puerto, A.; Méndez, A.; Arizmendi, L.; García-Cabañes, A.; Carrascosa, M. Optoelectronic Manipulation, Trapping, Splitting, and Merging of Water Droplets and Aqueous Biodroplets Based on the Bulk Photovoltaic Effect. Phys. Rev. Appl. 2020, 14, 024046. [Google Scholar] [CrossRef]
- Bezuglyi, B.A.; Ivanova, N.A. Creation, transportation, and coalescence of liquid drops by means of a light beam. Fluid Dyn. 2006, 41, 278–285. [Google Scholar] [CrossRef]
- Ivanova, N.A.; Tatosov, A.V.; Bezuglyi, B.A. Laser-induced capillary effect in thin layers of water-alcohol mixtures. Eur. Phys. J. E 2015, 38, 60. [Google Scholar] [CrossRef] [PubMed]
- Tatosova, K.A.; Malyuk, A.Y.; Ivanova, N.A. Droplet formation caused by laser-induced surface-tension-drivenflows in binary liquid mixtures. Coll. Surf. A 2017, 521, 22–29. [Google Scholar] [CrossRef]
- Malyuk, A.Y.; Ivanova, N.A. Optofluidic lens actuated by laser-induced solutocapillary forces. Opt. Commun. 2017, 392, 123–127. [Google Scholar] [CrossRef]
- Wuttig, M.; Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 2007, 6, 824–832. [Google Scholar] [CrossRef]
- Shportko, K.; Kremers, S.; Woda, M.; Lencer, D.; Robertson, J.; Wuttig, M. Resonant bonding in crystalline phase-change materials. Nat. Mater. 2008, 7, 653–658. [Google Scholar] [CrossRef]
- Lyeo, H.-K.; Cahill, D.G.; Lee, B.-S.; Abelson, J.R.; Kwon, M.-H.; Kim, K.-B.; Bishop, S.G.; Cheong, B.-K. Thermal conductivity of phase-change material Ge2Sb2Te5. Appl. Phys. Lett. 2006, 89, 151904. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Yamamoto, E.; Soma, R.; Nakayama, B.; Kuwahara, M.; Saiki, T. Rapid Assembly of Colloidal Crystals under Laser Illumination on a GeSbTe Substrate. Langmuir 2019, 35, 6403–6408. [Google Scholar] [CrossRef]
- Soma, R.; Nakayama, B.; Kuwahara, M.; Yamamoto, E.; Saiki, T. Phase-change Janus particles with switchable dual properties. Appl. Phys. Lett. 2020, 117, 221601. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takamatsu, Y.; Yamato, C.; Kuwahara, M.; Saito, Y.; Saiki, T. All-Optical Rapid Formation, Transport, and Sustenance of a Sessile Droplet in a Two-Dimensional Slit with Few-Micrometer Separation. Micromachines 2023, 14, 1460. https://doi.org/10.3390/mi14071460
Takamatsu Y, Yamato C, Kuwahara M, Saito Y, Saiki T. All-Optical Rapid Formation, Transport, and Sustenance of a Sessile Droplet in a Two-Dimensional Slit with Few-Micrometer Separation. Micromachines. 2023; 14(7):1460. https://doi.org/10.3390/mi14071460
Chicago/Turabian StyleTakamatsu, Yuka, Chizuru Yamato, Masashi Kuwahara, Yuta Saito, and Toshiharu Saiki. 2023. "All-Optical Rapid Formation, Transport, and Sustenance of a Sessile Droplet in a Two-Dimensional Slit with Few-Micrometer Separation" Micromachines 14, no. 7: 1460. https://doi.org/10.3390/mi14071460
APA StyleTakamatsu, Y., Yamato, C., Kuwahara, M., Saito, Y., & Saiki, T. (2023). All-Optical Rapid Formation, Transport, and Sustenance of a Sessile Droplet in a Two-Dimensional Slit with Few-Micrometer Separation. Micromachines, 14(7), 1460. https://doi.org/10.3390/mi14071460