Breakthrough in Silicon Photonics Technology in Telecommunications, Biosensing, and Gas Sensing
Abstract
:1. Introduction
2. History
3. CMOS Fabrication
4. Recent Advances in Si Photonics for Telecommunication
4.1. Si-Based Modulators
4.2. Wavelength Division Multiplexing (WDM) Systems
4.3. Photodetectors
5. Si Photonics Sensors
5.1. Si Photonics in Biosensing
5.2. Si Photonics in Gas Sensing
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yamada, K.; Tsuchizawa, T.; Nishi, H.; Kou, R.; Hiraki, T.; Takeda, K.; Fukuda, H.; Ishikawa, Y.; Wada, K.; Yamamoto, T. High-performance silicon photonics technology for telecommunications applications. Sci. Technol. Adv. Mater. 2014, 15, 024603. [Google Scholar] [CrossRef]
- Sato, K.I. Design and Performance of Large Port Count Optical Switches for Intra Data Centre Application. In Proceedings of the 2020 22nd International Conference on Transparent Optical Networks (ICTON), Bari, Italy, 19–23 July 2020; pp. 1–4. [Google Scholar]
- Roelkens, G.; Abassi, A.; Cardile, P.; Dave, U.; De Groote, A.; De Koninck, Y.; Dhoore, S.; Fu, X.; Gassenq, A.; Hattasan, N.; et al. III-V-on-Silicon Photonic Devices for Optical Communication and Sensing. Photonics 2015, 2, 969–1004. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. Advancement in Silicon Integrated Photonics Technologies for Sensing Applications in Near-Infrared and Mid-Infrared Region: A Review. Photonics 2022, 9, 331. [Google Scholar] [CrossRef]
- Sajan, S.C.; Singh, A.; Sharma, P.K.; Kumar, S. Silicon Photonics Biosensors for Cancer Cells Detection—A Review. IEEE Sens. J. 2023, 23, 3366–3377. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L.; Butt, M.A. Spectral characteristics of broad band-rejection filter based on Bragg grating, one-dimensional photonic crystal, and subwavelength grating waveguide—IOPscience. Phys. Scr. 2021, 96, 055505. Available online: https://iopscience.iop.org/article/10.1088/1402-4896/abe6be (accessed on 18 July 2023). [CrossRef]
- Butt, M.A.; Kazanskiy, N.L.; Khonina, S.N. Advances in Waveguide Bragg Grating Structures, Platforms, and Applications: An Up-to-Date Appraisal. Biosensors 2022, 12, 497. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. A T-shaped 1 × 8 balanced optical power splitter based on 90° bend asymmetric vertical slot waveguides. Laser Phys. 2019, 29, 046207. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Ultrashort inverted tapered silicon ridge-to-slot waveguide coupler at 1.55 µm and 3.392 µm wavelength. Appl. Opt. 2020, 59, 7821–7828. [Google Scholar] [CrossRef]
- Melchior, H. Integrated Photonics Research (1998). In Indium Phosphide Photonic Waveguide Devices and Their Fiber Pigtailing; Optica Publishing Group: British, CO, Canada, 1998; p. IMA2. Available online: https://opg.optica.org/abstract.cfm?uri=IPR-1998-IMA2 (accessed on 18 July 2023).
- Wang, J.; Santamato, A.; Jiang, P.; Bonneau, D.; Engin, E.; Silverstone, J.W.; Lermer, M.; Beetz, J.; Kamp, M.; Höfling, S.; et al. Gallium arsenide (GaAs) quantum photonic waveguide circuits. Opt. Commun. 2014, 327, 49–55. [Google Scholar] [CrossRef]
- Al-Douri, Y. Optical Waveguide of Lithium Niobate Nanophotonics. In Integrated Nanophotonics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2023; pp. 277–312. [Google Scholar]
- Chen, Q.; Zhu, Y.; Wu, D.; Li, T.; Li, Z.; Lu, C.; Chiang, K.S.; Zhang, X. Electrically generated optical waveguide in a lithium-niobate thin film. Opt. Express 2020, 28, 29895–29903. [Google Scholar] [CrossRef]
- Butt, M.A.; Solé, R.; Pujol, M.C.; Ródenas, A.; Lifante, G.; Choudhary, A.; Murugan, G.S.; Shepherd, D.P.; Wilkinson, J.S.; Aguiló, M.; et al. Fabrication of Y-Splitters and Mach–Zehnder Structures on (Yb,Nb):RbTiOPO4/RbTiOPO4 Epitaxial Layers by Reactive Ion Etching. J. Light. Technol. 2015, 33, 1863–1871. [Google Scholar] [CrossRef]
- Butt, M.A.; Nguyen, H.D.; Ródenas, A.; Romero, C.; Moreno, P.; de Aldana, J.R.V.; Aguiló, M.; Solé, R.M.; Pujol, M.C.; Díaz, F. Low-repetition rate femtosecond laser writing of optical waveguides in KTP crystals: Analysis of anisotropic refractive index changes. Opt. Express 2015, 23, 15343–15355. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.A. Integrated Optics: Platforms and Fabrication Methods. Encyclopedia 2023, 3, 824–838. [Google Scholar] [CrossRef]
- Fang, Z.; Zhao, C.Z. Recent progress in silicon photonics: A review. Int. Sch. Res. Not. 2012, 2012, 428690. [Google Scholar] [CrossRef]
- Soref, R. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1678–1687. [Google Scholar] [CrossRef]
- Reed, G.T.; Mashanovich, G.; Gardes, F.Y.; Thomson, D.J. Silicon optical modulators. Nat. Photonics 2010, 4, 518–526. [Google Scholar] [CrossRef]
- Miller, S.E. Integrated optics: An introduction. Bell Syst. Tech. J. 1969, 48, 2059–2069. [Google Scholar] [CrossRef]
- Gehler, J.; Bräuer, A.; Karthe, W.; Jäger, M. Antiresonant reflecting optical waveguides in strip configuration. Appl. Phys. Lett. 1994, 64, 276–278. [Google Scholar] [CrossRef]
- Aarnio, J.; Heimala, P.; Del Giudice, M.; Bruno, F. Birefringence control and dispersion characteristics of silicon oxynitride optical waveguides. Electron. Lett. 1991, 25, 2317–2318. [Google Scholar] [CrossRef]
- Zurhelle, D.; Schmidt, J.P.; Hoffmann, R.; Sander, D.; Mueller, J. Coupling structures for active and passive integrated optoelectronic components and circuits on silicon. In Proceedings of the Optoelectronic Integrated Circuit Materials, Physics, and Devices, San Jose, CA, USA, 6–9 February 1995; SPIE: Bellingham, WA, USA, 1995; Volume 2397, pp. 666–677. [Google Scholar]
- Gleine, W.; Muller, J. Laser trimming of SiON components for integrated optics. J. Light. Technol. 1991, 9, 1626–1629. [Google Scholar] [CrossRef]
- Müller, J.; Dahms, U.P.; Mahnke, M.; Wunderlich, S. Refractive index relaxation in PECVD-and LPCVD-SiON-waveguides on silicon substrates. In Proceedings of the Conference on Integrated Optics, Delft, The Netherlands, 3–6 April 1995; pp. 303–308. [Google Scholar]
- Wunderlich, S.; Schmidt, J.P.; Müller, J. Integration of SiON waveguides and photodiodes on silicon substrates. Appl. Opt. 1992, 31, 4186–4189. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.K.; Chou, J.C.; Cheng, S.P. Single-mode SiON/SiO2/Si optical waveguides prepared by plasma-enhanced chemical vapor deposition. Fiber Integr. Opt. 1995, 14, 133–139. [Google Scholar] [CrossRef]
- Henry, C.H.; Blonder, G.E.; Kazarinov, R.F. Glass waveguides on silicon for hybrid optical packaging. J. Light. Technol. 1989, 7, 1530–1539. [Google Scholar] [CrossRef]
- Hickernell, F.S.; Seaton, C.T. Channelized optical waveguides on silicon. Integr. Packag. Optoelectron. Devices 1987, 703, 164–174. [Google Scholar]
- Nagata, T.; Tanaka, T.; Miyake, K.; Kurotaki, H.; Yokoyama, S.Y.S.; Koyanagi, M.K.M. Micron-size optical waveguide for optoelectronic integrated circuit. Jpn. J. Appl. Phys. 1994, 33, 822. [Google Scholar] [CrossRef]
- Soref, R.A.; Schmidtchen, J.; Petermann, K. Large single-mode rib waveguides in GeSi-Si and Si-on-SiO/sub 2. IEEE J. Quantum Electron. 1991, 27, 1971–1974. [Google Scholar] [CrossRef]
- Splett, A.O.; Schmidtchen, J.; Schueppert, B.; Petermann, K. Integrated optical channel waveguides in silicon using SiGe alloys. In Proceedings of the Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications, Aachen, Germany, 28 October–2 November 1991; SPIE: Bellingham, WA, USA, 1991; Volume 1362, pp. 827–833. [Google Scholar]
- Namavar, F.; Soref, R.A. Optical waveguiding in Si/Si1− x Ge x/Si heterostructures. J. Appl. Phys. 1991, 70, 3370–3372. [Google Scholar] [CrossRef]
- Weiss, B.L.; Yang, Z.; Namavar, F. Wavelength dependent propagation loss characteristics of SiGe/Si planar waveguides. Electron. Lett. 1992, 28, 2218–2220. [Google Scholar] [CrossRef]
- Grant, M.F. Integrated optical waveguide devices on silicon for optical communications. In Proceedings of the IEE Colloquium on Planar Silicon Hybrid Optoelectronics (Digest No. 1994/198), London, UK, 24 October 1994; IET: Stevenage, UK, 1994; pp. 1/1–110. [Google Scholar]
- Najafi, S.I.; Honkanen, S.; Tervonen, A. Recent progress in glass integrated optical circuits. Integr. Opt. Microstruct. II 1994, 2291, 6–12. [Google Scholar]
- Habara, K.; Matsunaga, T. Silica glass waveguide planar lightwave circuit applications in photonic switching. In Proceedings of the Photonic Switching, Minsk, Belarus, 1–3 July 1992; SPIE: Bellingham, WA, USA, 1993; Volume 1807, pp. 418–421. [Google Scholar]
- Tang, X.; Wongchotigul, K.; Spencer, M.G. Optical waveguide formed by cubic silicon carbide on sapphire substrates. Appl. Phys. Lett. 1991, 58, 917–918. [Google Scholar] [CrossRef]
- Jackson, S.M.; Reed, G.T.; Reeson, K.J. Wave-Guiding in epitaxial 3c-Silicon carbide on silicon. Electron. Lett. 1995, 31, 1438–1439. [Google Scholar] [CrossRef]
- Liu, Y.M.; Prucnal, P.R. Low-loss silicon carbide optical waveguides for silicon-based optoelectronic devices. IEEE Photonics Technol. Lett. 1993, 5, 704–707. [Google Scholar] [CrossRef]
- Iyer, S.S.; Xie, Y.-H. Light Emission from Silicon. Science 1993, 260, 40–46. [Google Scholar] [CrossRef]
- Soref, R.A. Silicon-based optoelectronics. Proc. IEEE 1993, 81, 1687–1706. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, Q.; Kamyab, L.; Rostami, A.; Capolino, F.; Boyraz, O. Sub-micron silicon nitride waveguide fabrication using conventional optical lithography. Opt. Express 2015, 23, 6780–6786. [Google Scholar] [CrossRef]
- Okazaki, S. High resolution optical lithography or high throughput electron beam lithography: The technical struggle from the micro to the nano-fabrication evolution. Microelectron. Eng. 2015, 133, 23–35. [Google Scholar] [CrossRef]
- Zheng, Y.; Gao, P.; Tang, X.; Liu, J.; Duan, J. Effects of electron beam lithography process parameters on structure of silicon optical waveguide based on SOI. J. Cent. South Univ. 2022, 29, 3335–3345. [Google Scholar] [CrossRef]
- Broers, A.N.; Hoole, A.C.F.; Ryan, J.M. Electron beam lithography—Resolution limits. Microelectron. Eng. 1996, 32, 131–142. [Google Scholar] [CrossRef]
- Bruinink, C.M.; Burresi, M.; de Boer, M.J.; Segerink, F.B.; Jansen, H.V.; Berenschot, E.; Reinhoudt, D.N.; Huskens, J.; Kuipers, L. Nanoimprint Lithography for Nanophotonics in Silicon. Nano Lett. 2008, 8, 2872–2877. [Google Scholar] [CrossRef]
- Shneidman, A.V.; Becker, K.P.; Lukas, M.A.; Torgerson, N.; Wang, C.; Reshef, O.; Burek, M.J.; Paul, K.; McLellan, J.; Lončar, M. All-Polymer Integrated Optical Resonators by Roll-to-Roll Nanoimprint Lithography. ACS Photonics 2018, 5, 1839–1845. [Google Scholar] [CrossRef]
- Hiscocks, M.P.; Ganesan, K.; Gibson, B.C.; Huntington, S.T.; Ladouceur, F.; Prawer, S. Diamond waveguides fabricated by reactive ion etching. Opt. Express 2008, 16, 19512–19519. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Lee, J. Optimization of deep reactive ion etching for microscale silicon hole arrays with high aspect ratio. Micro Nano Syst. Lett. 2022, 10, 12. [Google Scholar] [CrossRef]
- Bauhuber, M.; Mikrievskij, A.; Lechner, A. Isotropic wet chemical etching of deep channels with optical surface quality in silicon with HNA based etching solutions. Mater. Sci. Semicond. Process. 2013, 16, 1428–1433. [Google Scholar] [CrossRef]
- Butt, M.A.; Kozłowski, Ł.; Piramidowicz, R. Numerical scrutiny of a silica-titania-based reverse rib waveguide with vertical and rounded sidewalls. Appl. Opt. 2023, 62, 1296–1302. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Luo, Y.; Xiong, B.; Sun, C.; Wang, L.; Wang, J.; Han, Y.; Yan, J.; Wei, T.; Lu, H. Fabrication of GaN-based ridge waveguides with very smooth and vertical sidewalls by combined plasma dry etching and wet chemical etching. Phys. Status Solidi A 2015, 212, 2341–2344. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. 2D-Photonic crystal heterostructures for the realization of compact photonic devices. Photonics Nanostructures Fundam. Appl. 2021, 44, 100903. [Google Scholar] [CrossRef]
- Butt, M.A.; Kazanskiy, N.L. Two-dimensional photonic crystal heterostructure for light steering and TM-polarization maintaining applications—IOPscience. Laser Phys. 2021, 31, 036201. Available online: https://iopscience.iop.org/article/10.1088/1555-6611/abd8ca (accessed on 18 July 2023). [CrossRef]
- Quack, N.; Takabayashi, A.Y.; Sattari, H.; Edinger, P.; Jo, G.; Bleiker, S.J.; Errando-Herranz, C.; Gylfason, K.B.; Niklaus, F.; Khan, U.; et al. Integrated silicon photonic MEMS. Microsyst. Nanoeng. 2023, 9, 27. [Google Scholar] [CrossRef]
- Yue, H.; Chen, K.; Chu, T. Ultrahigh-linearity dual-drive scheme using a single silicon modulator. Opt. Lett. 2023, 48, 2995–2998. Available online: https://opg.optica.org/ol/abstract.cfm?uri=ol-48-11-2995 (accessed on 18 July 2023). [CrossRef]
- Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67. [Google Scholar] [CrossRef]
- Yue, G.; Xing, Z.; Hu, H.; Cheng, Z.; Lu, G.-W.; Liu, T. Graphene-based dual-mode modulators. Opt. Express 2020, 28, 18456–18471. [Google Scholar] [CrossRef]
- Phatak, A.; Cheng, Z.; Qin, C.; Goda, K. Design of electro-optic modulators based on graphene-on-silicon slot waveguides. Opt. Lett. 2016, 41, 2501–2504. [Google Scholar] [CrossRef] [PubMed]
- Sorianello, V.; Midrio, M.; Contestabile, G.; Asselberghs, I.; Van Campenhout, J.; Huyghebaert, C.; Goykhman, I.; Ott, A.K.; Ferrari, A.C.; Romagnoli, M. Graphene–silicon phase modulators with gigahertz bandwidth. Nat. Photonics 2018, 12, 40–44. [Google Scholar] [CrossRef]
- Soref, R.; Bennett, B. Electrooptical effects in silicon. IEEE J. Quantum Electron. 1987, 23, 123–129. [Google Scholar] [CrossRef]
- Witzens, J. High-Speed Silicon Photonics Modulators. Proc. IEEE 2018, 106, 2158–2182. [Google Scholar] [CrossRef]
- Pant, B.; Zhang, W.; Ebert, M.; Yan, X.; Du, H.; Banakar, M.; Tran, D.T.; Qi, Y.; Rowe, D.; Jeyaselvan, V.; et al. Study into the spread of heat from thermo-optic silicon photonic elements. Opt. Express 2021, 29, 36461–36468. [Google Scholar] [CrossRef]
- Fasih, M.; Yoon, H.; Kwan, N.; Kim, J.; Yoon, J.; Sikder, R.I.; Kurt, H.; Park, H.H. Optical Sideband Modulation in Silicon Photonics Platform Using Mach-Zehnder Interferometers. In Proceedings of the 2022 24th International Conference on Advanced Communication Technology (ICACT), PyeongChang, Republic of Korea, 13–16 February 2022; pp. 288–292. [Google Scholar]
- Gui, Y.; Nouri, B.M.; Miscuglio, M.; Amin, R.; Wang, H.; Khurgin, J.B.; Dalir, H.; Sorger, V.J. 100 GHz micrometer-compact broadband monolithic ITO Mach–Zehnder interferometer modulator enabling 3500 times higher packing density. Nanophotonics 2022, 11, 4001–4009. [Google Scholar] [CrossRef]
- Xu, Q.; Schmidt, B.; Pradhan, S.; Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 2005, 435, 325–327. [Google Scholar] [CrossRef]
- Green, W.M.J.; Rooks, M.J.; Sekaric, L.; Vlasov, Y.A. Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Opt. Express 2007, 15, 17106–17113. [Google Scholar] [CrossRef]
- Jiang, W.; Gu, L.; Chen, X.; Chen, R.T. Photonic crystal waveguide modulators for silicon photonics: Device physics and some recent progress. Solid State Electronics 2007, 51, 1278–1286. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Chen, X.; Bertrand, M.; Shams-Ansari, A.; Chandrasekhar, S.; Winzer, P.; Lončar, M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 2018, 562, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Miura, H.; Qiu, F.; Spring, A.M.; Kashino, T.; Kikuchi, T.; Ozawa, M.; Nawata, H.; Odoi, K.; Yokoyama, S. Low driving voltage Mach-Zehnder interference modulator constructed from an electro-optic polymer on ultra-thin silicon with a broadband operation. Opt. Express 2017, 25, 768–775. [Google Scholar] [CrossRef]
- Kieninger, C.; Füllner, C.; Zwickel, H.; Kutuvantavida, Y.; Kemal, J.N.; Eschenbaum, C.; Elder, D.L.; Dalton, L.R.; Freude, W.; Randel, S. Silicon-organic hybrid (SOH) Mach-Zehnder modulators for 100 GBd PAM4 signaling with sub-1 dB phase-shifter loss. Opt. Express 2020, 28, 24693–24707. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, A.B.; Swillam, M.A. Optical modulator using ultra-thin silicon waveguide in SOI hybrid technology. Opt. Quantum Electron. 2022, 54, 181. [Google Scholar] [CrossRef]
- Xiao, L.; Wu, J.-W. Porous silicon based all-optical modulator using asymmetrical Mach–Zehnder interferometer configuration. Opt. Commun. 2015, 338, 246–252. [Google Scholar] [CrossRef]
- Zhang, W.; Ebert, M.; Li, K.; Chen, B.; Yan, X.; Du, H.; Banakar, M.; Tran, D.T.; Littlejohns, C.G.; Scofield, A.; et al. Harnessing plasma absorption in silicon MOS ring modulators. Nat. Photonics 2023, 17, 273–279. [Google Scholar] [CrossRef]
- Qiu, F.; Han, Y. Electro-optic polymer ring resonator modulators [Invited]. Chin. Opt. Lett. 2021, 19, 041301. [Google Scholar] [CrossRef]
- Manipatruni, S.; Xu, Q.; Schmidt, B.; Shakya, J.; Lipson, M. High Speed Carrier Injection 18 Gb/s Silicon Micro-ring Electro-optic Modulator. In Proceedings of the LEOS 2007—IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, Lake Buena Vista, FL, USA, 21–25 October 2007; pp. 537–538. [Google Scholar]
- Jayatilleka, H.; Frish, H.; Kumar, R.; Heck, J.; Ma, C.; Sakib, M.N.; Huang, D.; Rong, H. Post-Fabrication Trimming of Silicon Photonic Ring Resonators at Wafer-Scale. J. Light. Technol. 2021, 39, 5083–5088. [Google Scholar] [CrossRef]
- Chen, L.; Preston, K.; Manipatruni, S.; Lipson, M. Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors. Opt. Express 2009, 17, 15248–15256. [Google Scholar] [CrossRef]
- Zheng, X.; Chang, E.; Amberg, P.; Shubin, I.; Lexau, J.; Liu, F.; Thacker, H.; Djordjevic, S.S.; Lin, S.; Luo, Y.; et al. A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control. Opt. Express 2014, 22, 12628–12633. [Google Scholar] [CrossRef]
- Li, J.; Li, G.; Zheng, X.; Raj, K.; Krishnamoorthy, A.V.; Buckwalter, J.F. A 25-Gb/s Monolithic Optical Transmitter with Micro-Ring Modulator in 130-nm SoI CMOS. IEEE Photonics Technol. Lett. 2013, 25, 1901–1903. [Google Scholar] [CrossRef]
- Pantouvaki, M.; Verheyen, P.; De Coster, J.; Lepage, G.; Absil, P.; Van Campenhout, J. 56Gb/s ring modulator on a 300mm silicon photonics platform. In Proceedings of the 2015 European Conference on Optical Communication (ECOC), Valencia, Spain, 27 September–1 October 2015; pp. 1–3. [Google Scholar]
- Ziebell, M.; Marris-Morini, D.; Rasigade, G.; Crozat, P.; Fédéli, J.-M.; Grosse, P.; Cassan, E.; Vivien, L. Ten Gbit/s ring resonator silicon modulator based on interdigitated PN junctions. Opt. Express 2011, 19, 14690–14695. [Google Scholar] [CrossRef] [PubMed]
- Moazeni, S.; Lin, S.; Wade, M.; Alloatti, L.; Ram, R.J.; Popović, M.; Stojanović, V. A 40-Gb/s PAM-4 Transmitter Based on a Ring-Resonator Optical DAC in 45-nm SOI CMOS. IEEE J. Solid-State Circuits 2017, 52, 3503–3516. [Google Scholar] [CrossRef]
- Li, G.; Krishnamoorthy, A.V.; Shubin, I.; Yao, J.; Luo, Y.; Thacker, H.; Zheng, X.; Raj, K.; Cunningham, J.E. Ring Resonator Modulators in Silicon for Interchip Photonic Links. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 95–113. [Google Scholar] [CrossRef]
- Hai, M.S.; Fard, M.M.P.; Liboiron-Ladouceur, O. A low-voltage PAM-4 SOI ring-based modulator. In Proceedings of the 2014 IEEE Photonics Conference, San Diego, CA, USA, 12–16 October 2014; pp. 194–195. [Google Scholar]
- Dong, P.; Liao, S.; Feng, D.; Liang, H.; Zheng, D.; Shafiiha, R.; Kung, C.-C.; Qian, W.; Li, G.; Zheng, X. Low V pp, ultralow-energy, compact, high-speed silicon electro-optic modulator. Opt. Express 2009, 17, 22484–22490. [Google Scholar] [CrossRef]
- Hu, Y.; Xiao, X.; Xu, H.; Li, X.; Xiong, K.; Li, Z.; Chu, T.; Yu, Y.; Yu, J. High-speed silicon modulator based on cascaded microring resonators. Opt. Express 2012, 20, 15079–15085. [Google Scholar] [CrossRef]
- Demirtzioglou, I.; Lacava, C.; Bottrill, K.R.H.; Thomson, D.J.; Reed, G.T.; Richardson, D.J.; Petropoulos, P. Frequency comb generation in a silicon ring resonator modulator. Opt. Express 2018, 26, 790–796. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L.; Butt, M.A.; Karpeev, S.V. Optical multiplexing techniques and their marriage for on-chip and optical fiber communication: A review. Opto-Electron. Adv. 2022, 5, 210127. [Google Scholar] [CrossRef]
- Wang, Q. Investigation progress on key photonic integration for application in optical communication network. Sci. China Ser. F 2003, 46, 60–66. [Google Scholar] [CrossRef]
- Irace, A.; Breglio, G. Silicon-based optoelectronic filters based on a Bragg grating and P-i-N diode for DWDM optical networks. In Proceedings of the Laser Diodes, Optoelectronic Devices, and Heterogenous Integration, Bruges, Belgium, 28 October–1 November 2002; Volume 4947, pp. 68–73. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/4947.toc (accessed on 28 October 2002).
- Fukazawa, T.; Ohno, F.; Baba, T. Very Compact Arrayed-Waveguide-Grating Demultiplexer Using Si Photonic Wire Waveguides. Jpn. J. Appl. Phys. 2004, 43, L673. [Google Scholar] [CrossRef]
- Brouckaert, J.; Bogaerts, W.; Dumon, P.; Van Thourhout, D.; Baets, R. Planar Concave Grating Demultiplexer Fabricated on a Nanophotonic Silicon-on-Insulator Platform. J. Light. Technol. 2007, 25, 1269–1275. [Google Scholar] [CrossRef]
- Kim, D.W.; Barkai, A.; Jones, R.; Elek, N.; Nguyen, H.; Liu, A. Silicon-on-insulator eight-channel optical multiplexer based on a cascade of asymmetric Mach–Zehnder interferometers. Opt. Lett. 2008, 33, 530–532. [Google Scholar] [CrossRef] [PubMed]
- Horst, F.; Green, W.M.J.; Offrein, B.J.; Vlasov, Y.A. Silicon-on-Insulator Echelle Grating WDM Demultiplexers With Two Stigmatic Points. IEEE Photonics Technol. Lett. 2009, 21, 1743–1745. [Google Scholar] [CrossRef]
- Fiorentino, M.; Peng, Z.; Binkert, N.; Beausoleil, R.G. Devices and architectures for large scale integrated silicon photonics circuits. In Proceedings of the IEEE Winter Topicals 2011, Keystone, CO, USA, 10–12 January 2011; pp. 131–132. [Google Scholar]
- Feng, D.; Qian, W.; Liang, H.; Luff, B.J.; Asghari, M. High-Speed Receiver Technology on the SOI Platform. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 3800108. [Google Scholar] [CrossRef]
- Horst, F.; Green, W.M.J.; Assefa, S.; Shank, S.M.; Vlasov, Y.A.; Offrein, B.J. Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing. Opt. Express 2013, 21, 11652–11658. [Google Scholar] [CrossRef]
- Okamoto, K. Wavelength-Division-Multiplexing Devices in Thin SOI: Advances and Prospects. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 248–257. [Google Scholar] [CrossRef]
- Wang, J.; Chen, S.; Dai, D. Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects. Opt. Lett. 2014, 39, 6993–6996. [Google Scholar] [CrossRef]
- Chen, S.; Shi, Y.; He, S.; Dai, D. Compact monolithically-integrated hybrid (de)multiplexer based on silicon-on-insulator nanowires for PDM-WDM systems. Opt. Express 2015, 23, 12840–12849. [Google Scholar] [CrossRef]
- Castellan, C.; Tondini, S.; Mancinelli, M.; Kopp, C.; Pavesi, L. Low crosstalk silicon arrayed waveguide gratings for on-chip optical multiplexing. In Proceedings of the Silicon Photonics: From Fundamental Research to Manufacturing, Strasbourg, France, 23–26 April 2018; Volume 10686, p. 106860V. [Google Scholar]
- Jeong, S.H.; Onawa, Y.; Shimura, D.; Okayama, H.; Aoki, T.; Yaegashi, H.; Horikawa, T.; Nakamura, T. Polarization Diversified 16λ Demultiplexer Based on Silicon Wire Delayed Interferometers and Arrayed Waveguide Gratings. J. Light. Technol. 2020, 38, 2680–2687. [Google Scholar] [CrossRef]
- Hammood, M.; Mistry, A.; Yun, H.; Ma, M.; Chrostowski, L.; Jaeger, N.A.F. Four-channel, Silicon Photonic, Wavelength Multiplexer-Demultiplexer With High Channel Isolations. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 8–12 March 2020; Optica Publishing Group: San Diego, CA, USA, 2020; p. M3F.5. [Google Scholar]
- Shen, X.; Chen, B.; Zhu, Y.; Shi, W. Silicon photonic integrated circuits and its application in data center. In Proceedings of the Seventh Symposium on Novel Photoelectronic Detection Technology and Applications, Kunming, China, 5–7 November 2020; SPIE: Bellingham, WA, USA, 2021; Volume 11763, p. 1176380. [Google Scholar]
- Wang, Y.; Wang, S.; Novick, A.; James, A.; Parsons, R.; Rizzo, A.; Bergman, K. Dispersion-Engineered and Fabrication-Robust SOI Waveguides for Ultra-Broadband DWDM. In Proceedings of the 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 5–9 March 2023; pp. 1–3. [Google Scholar]
- Fu, X.; Cheng, J.; Huang, Q.; Hu, Y.; Xie, W.; Tassaert, M.; Verbist, J.; Ma, K.; Zhang, J.; Chen, K.; et al. 5 x 20 Gb/s heterogeneously integrated III-V on silicon electro-absorption modulator array with arrayed waveguide grating multiplexer. Opt. Express 2015, 23, 18686–18693. [Google Scholar] [CrossRef]
- Trita, A.; Thomas, A.; Rickman, A. CMOS compatible athermal silicon photonic filters based on hydrogenated amorphous silicon. Opt. Express 2022, 30, 19311–19319. [Google Scholar] [CrossRef] [PubMed]
- Saha, N.; Brunetti, G.; Armenise, M.N.; Ciminelli, C. Tunable narrow band add-drop filter design based on apodized long period waveguide grating assisted co-directional coupler. Opt. Express 2022, 30, 28632–28646. [Google Scholar] [CrossRef] [PubMed]
- Jalali, B.; Fathpour, S. Silicon Photonics. J. Light. Technol. 2006, 24, 4600–4615. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, R.; Zhu, Q.; Yuan, Y.; Su, Y. Architecture and Devices for Silicon Photonic Switching in Wavelength, Polarization and Mode. J. Light. Technol. 2020, 38, 215–225. [Google Scholar] [CrossRef]
- Fokine, M.; Nilsson, L.E.; Claesson, Å.; Berlemont, D.; Kjellberg, L.; Krummenacher, L.; Margulis, W. Integrated fiber Mach–Zehnder interferometer for electro-optic switching. Opt. Lett. 2002, 27, 1643–1645. [Google Scholar] [CrossRef]
- Brunetti, G.; Marocco, G.; Benedetto, A.D.; Giorgio, A.; Armenise, M.N.; Ciminelli, C. Design of a large bandwidth 2 × 2 interferometric switching cell based on a sub-wavelength grating. J. Opt. 2021, 23, 085801. [Google Scholar] [CrossRef]
- Patel, D.; Veerasubramanian, V.; Ghosh, S.; Shi, W.; Samani, A.; Zhong, Q.; Plant, D.V. A 4×4 fully non-blocking switch on SOI based on interferometric thermo-optic phase shifters. In Proceedings of the 2014 Optical Interconnects Conference, San Diego, CA, USA, 4–7 May 2014; pp. 104–105. [Google Scholar]
- Padmaraju, K.; Bergman, K. Resolving the thermal challenges for silicon microring resonator devices. Nanophotonics 2014, 3, 269–281. [Google Scholar] [CrossRef]
- Nikdast, M.; Nicolescu, G.; Trajkovic, J.; Liboiron-Ladouceur, O. Chip-Scale Silicon Photonic Interconnects: A Formal Study on Fabrication Non-Uniformity. J. Light. Technol. 2016, 34, 3682–3695. [Google Scholar] [CrossRef]
- Hsu, W.C.; Nujhat, N.; Kupp, B.; Conley, J.F.; Wang, A.X. On-chip wavelength division multiplexing filters using extremely efficient gate-driven silicon microring resonator array. Sci. Rep. 2023, 13, 5269. [Google Scholar] [CrossRef]
- Li, X.; Zhu, Y.; Liu, Z.; Peng, L.; Liu, X.; Niu, C.; Zheng, J.; Zuo, Y.; Cheng, B. 75 GHz germanium waveguide photodetector with 64 Gbps data rates utilizing an inductive-gain-peaking technique. J. Semicond. 2023, 44, 012301. [Google Scholar] [CrossRef]
- Suh, D.; Kim, S.; Joo, J.; Kim, G. 36-GHz High-Responsivity Ge Photodetectors Grown by RPCVD. IEEE Photonics Technol. Lett. 2009, 21, 672–674. [Google Scholar] [CrossRef]
- Lischke, S.; Peczek, A.; Morgan, J.S.; Sun, K.; Steckler, D.; Yamamoto, Y.; Korndörfer, F.; Mai, C.; Marschmeyer, S.; Fraschke, M.; et al. Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz. Nat. Photonics 2021, 15, 925–931. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.; Zhang, G.; Chen, Y.; Huang, Y.-C.; Gong, X. High-speed and high-responsivity p-i-n waveguide photodetector at a 2 µm wavelength with a Ge0.92Sn0.08/Ge multiple-quantum-well active layer. Opt. Lett. 2021, 46, 2099–2102. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Bhargava, N.; Gupta, J.; Coppinger, M.; Kolodzey, J. Infrared photoresponse of GeSn/n-Ge heterojunctions grown by molecular beam epitaxy. Opt. Express 2014, 22, 11029–11034. [Google Scholar] [CrossRef]
- Gassenq, A.; Gencarelli, F.; Van Campenhout, J.; Shimura, Y.; Loo, R.; Narcy, G.; Vincent, B.; Roelkens, G. GeSn/Ge heterostructure short-wave infrared photodetectors on silicon. Opt. Express 2012, 20, 27297–27303. [Google Scholar] [CrossRef]
- Roucka, R.; Mathews, J.; Weng, C.; Beeler, R.; Tolle, J.; Menéndez, J.; Kouvetakis, J. High-Performance Near-IR Photodiodes: A Novel Chemistry-Based Approach to Ge and Ge–Sn Devices Integrated on Silicon. IEEE J. Quantum Electron. 2011, 47, 213–222. [Google Scholar] [CrossRef]
- Bartels, A.; Peiner, E.; Tang, G.P.; Klockenbrink, R.; Wehmann, H.H.; Schlachetzki, A. Performance of InGaAs metal-semiconductor-metal photodetectors on Si. IEEE Photonics Technol. Lett. 1996, 8, 670–672. [Google Scholar] [CrossRef]
- Chen, G.; Goyvaerts, J.; Kumari, S.; Van Kerrebrouck, J.; Muneeb, M.; Uvin, S.; Yu, Y.; Roelkens, G. Integration of high-speed GaAs metal-semiconductor-metal photodetectors by means of transfer printing for 850 nm wavelength photonic interposers. Opt. Express 2018, 26, 6351–6359. [Google Scholar] [CrossRef]
- Knights, A.P.; Bradley, J.D.B.; Gou, S.H.; Jessop, P.E. Silicon-on-insulator waveguide photodetector with self-ion-implantation-engineered-enhanced infrared response. J. Vac. Sci. Technol. A 2006, 24, 783–786. [Google Scholar] [CrossRef]
- Ackert, J.J.; Fiorentino, M.; Logan, D.F.; Beausoleil, R.G.; Jessop, P.E.; Knights, A.P. Silicon-on-insulator microring resonator defect-based photodetector with 3.5-GHz bandwidth. J. Nanophotonics 2011, 5, 059507-1–059507-6. [Google Scholar] [CrossRef]
- Ahn, D.; Hong, C.; Liu, J.; Giziewicz, W.; Beals, M.; Kimerling, L.C.; Michel, J.; Chen, J.; Kärtner, F.X. High performance, waveguide integrated Ge photodetectors. Opt. Express 2007, 15, 3916–3921. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Galili, M.; Verheyen, P.; De Heyn, P.; Lepage, G.; De Coster, J.; Balakrishnan, S.; Absil, P.; Oxenlowe, L.; Van Campenhout, J.; et al. 100-Gbps RZ Data Reception in 67-GHz Si-Contacted Germanium Waveguide p-i-n Photodetectors. J. Light. Technol. 2017, 35, 722–726. [Google Scholar] [CrossRef]
- Li, X.L.; Liu, Z.; Peng, L.Z.; Liu, X.Q.; Wang, N.; Zhao, Y.; Zheng, J.; Zuo, Y.H.; Xue, C.L.; Cheng, B.W. High-Performance Germanium Waveguide Photodetectors on Silicon. Chin. Phys. Lett. 2020, 37, 038503. [Google Scholar] [CrossRef]
- Vivien, L.; Osmond, J.; Fédéli, J.M.; Marris-Morini, D.; Crozat, P.; Damlencourt, J.F.; Cassan, E.; Lecunff, Y.; Laval, S. 42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide. Opt. Express 2009, 17, 6252–6257. [Google Scholar] [CrossRef]
- Wu, L.; Lv, D.; Zhao, N.; Wang, R.; Wu, A. Research on Germanium Photodetector with Multi-Mode Waveguide Input. Photonics 2023, 10, 455. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, W.; Lei, D.; Gong, X.; Zhou, Q.; Lee, S.Y.; Loke, W.K.; Yoon, S.F.; Tok, E.S.; Liang, G.; et al. Suppression of dark current in germanium-tin on silicon p-i-n photodiode by a silicon surface passivation technique. Opt. Express 2015, 23, 18611–18619. [Google Scholar] [CrossRef]
- Xu, S.; Huang, Y.C.; Lee, K.H.; Wang, W.; Dong, Y.; Lei, D.; Masudy-Panah, S.; Tan, C.S.; Gong, X.; Yeo, Y.C. GeSn lateral p-i-n photodetector on insulating substrate. Opt. Express 2018, 26, 17312–17321. [Google Scholar] [CrossRef]
- Li, X.; Peng, L.; Liu, Z.; Zhou, Z.; Zheng, J.; Xue, C.; Zuo, Y.; Chen, B.; Cheng, B. 30 GHz GeSn photodetector on SOI substrate for 2 µm wavelength application. Photonics Res. 2021, 9, 494–500. [Google Scholar] [CrossRef]
- Liu, C.H.; Bansal, R.; Wu, C.W.; Jheng, Y.T.; Chang, G.E. GeSn Waveguide Photodetectors with Vertical p–i–n Heterostructure for Integrated Photonics in the 2 μm Wavelength Band. Adv. Photonics Res. 2022, 3, 2100330. [Google Scholar] [CrossRef]
- Xue, Y.; Han, Y.; Tong, Y.; Yan, Z.; Wang, Y.; Zhang, Z.; Tsang, H.K.; Lau, K.M. High-performance III-V photodetectors on a monolithic InP/SOI platform. Optica 2021, 8, 1204–1209. [Google Scholar] [CrossRef]
- Wan, Y.; Zhang, Z.; Chao, R.; Norman, J.; Jung, D.; Shang, C.; Li, Q.; Kennedy, M.J.; Liang, D.; Zhang, C. Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates. Opt. Express 2017, 25, 27715–27723. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Jiao, Y.; Yao, W.; Cao, Z.; van Engelen, J.P.; Roelkens, G.; Smit, M.K.; van der Tol, J.J.G.M. High-bandwidth uni-traveling carrier waveguide photodetector on an InP-membrane-on-silicon platform. Opt. Express 2016, 24, 8290–8301. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; De Groote, A.; Abbasi, A.; Loi, R.; O’Callaghan, J.; Corbett, B.; Trindade, A.J.; Bower, C.A.; Roelkens, G. Silicon photonics fiber-to-the-home transceiver array based on transfer-printing-based integration of III-V photodetectors. Opt. Express 2017, 25, 14290–14299. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Jung, D.; Shang, C.; Liu, A.; Morgan, J.; Zang, J.; Li, Q.; Klamkin, J.; Bowers, J.E.; Beling, A. Low dark current III–V on silicon photodiodes by heteroepitaxy. Opt. Express 2018, 26, 13605–13613. [Google Scholar] [CrossRef]
- Wang, R.; Sprengel, S.; Muneeb, M.; Boehm, G.; Baets, R.; Amann, M.-C.; Roelkens, G. 2 μm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits. Opt. Express 2015, 23, 26834–26841. [Google Scholar] [CrossRef]
- Baehr-Jones, T.; Hochberg, M.; Scherer, A. Photodetection in silicon beyond the band edge with surface states. Opt. Express 2008, 16, 1659–1668. [Google Scholar] [CrossRef]
- Goykhman, I.; Desiatov, B.; Khurgin, J.; Shappir, J.; Levy, U. Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band. Opt. Express 2012, 20, 28594–28602. [Google Scholar] [CrossRef]
- Tanabe, T.; Sumikura, H.; Taniyama, H.; Shinya, A.; Notomi, M. All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip. Appl. Phys. Lett. 2010, 96, 101103. [Google Scholar] [CrossRef]
- Li, Y.; Feng, S.; Zhang, Y.; Poon, A.W. Sub-bandgap linear-absorption-based photodetectors in avalanche mode in PN-diode-integrated silicon microring resonators. Opt. Lett. 2013, 38, 5200–5203. [Google Scholar] [CrossRef]
- Li, Y.; Poon, A.W. Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector. Opt. Express 2015, 23, 360–372. [Google Scholar] [CrossRef]
- Geis, M.W.; Spector, S.J.; Grein, M.E.; Yoon, J.U.; Lennon, D.M.; Lyszczarz, T.M. Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response. Opt. Express 2009, 17, 5193–5204. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Sorin, W.V.; Liang, D.; Cheung, S.; Peng, Y.; Jain, M.; Huang, Z.; Fiorentino, M.; Beausoleil, R.G. Mechanisms of enhanced sub-bandgap absorption in high-speed all-silicon avalanche photodiodes. Photonics Res. 2023, 11, 337–346. [Google Scholar] [CrossRef]
- Conteduca, D.; Arruda, G.S.; Barth, I.; Wang, Y.; Krauss, T.F.; Martins, E.R. Beyond Q: The Importance of the Resonance Amplitude for Photonic Sensors. ACS Photonics 2022, 9, 1757–1763. [Google Scholar] [CrossRef] [PubMed]
- Torrijos-Morán, L.; Lisboa, B.D.; Soler, M.; Lechuga, L.M.; García-Rupérez, J. Integrated optical bimodal waveguide biosensors: Principles and applications. Results Opt. 2022, 9, 100285. [Google Scholar] [CrossRef]
- Butt, M.A.; Kazanskiy, N.L.; Khonina, S.N.; Voronkov, G.S.; Grakhova, E.P.; Kutluyarov, R.V. A Review on Photonic Sensing Technologies: Status and Outlook. Biosensors 2023, 13, 568. [Google Scholar] [CrossRef]
- Shahbaz, M.; Butt, M.A.; Piramidowicz, R. A Concise Review of the Progress in Photonic Sensing Devices. Photonics 2023, 10, 698. [Google Scholar] [CrossRef]
- Chen, X.; Milosevic, M.M.; Stanković, S.; Reynolds, S.; Bucio, T.D.; Li, K.; Thomson, D.J.; Gardes, F.; Reed, G.T. The emergence of silicon photonics as a flexible technology platform. Proc. IEEE 2018, 106, 2101–2116. [Google Scholar] [CrossRef]
- Mujeeb-U-Rahman, M.; Scherer, A. Silicon-on-insulator-based complementary metal oxide semiconductor integrated optoelectronic platform for biomedical applications. J. Biomed. Opt. 2016, 21, 127004. [Google Scholar] [CrossRef]
- Brunetti, G.; Olio, F.D.; Conteduca, D.; Armenise, M.N.; Ciminelli, C. Comprehensive mathematical modelling of ultra-high Q grating-assisted ring resonators. J. Opt. 2020, 22, 035802. [Google Scholar] [CrossRef]
- Liu, K.; Jin, N.; Cheng, H.; Chauhan, N.; Puckett, M.W.; Nelson, K.D.; Behunin, R.O.; Rakich, P.T.; Blumenthal, D.J. Ultralow 0.034 dB/m loss wafer-scale integrated photonics realizing 720 million Q and 380 μW threshold Brillouin lasing. Opt. Lett. 2022, 47, 1855–1858. [Google Scholar] [CrossRef]
- Cheng, Z.; Chen, X.; Wong, C.Y.; Xu, K.; Tsang, H.K. Mid-infrared Suspended Membrane Waveguide and Ring Resonator on Silicon-on-Insulator. IEEE Photonics J. 2012, 4, 1510–1519. [Google Scholar] [CrossRef]
- Marris-Morini, D.; Vakarin, V.; Ramirez, J.M.; Liu, Q.; Ballabio, A.; Frigerio, J.; Montesinos, M.; Alonso-Ramos, C.; Roux, X.L.; Serna, S.; et al. Germanium-based integrated photonics from near- to mid-infrared applications. Nanophotonics 2018, 7, 1781–1793. [Google Scholar] [CrossRef]
- Kang, J.; Cheng, Z.; Zhou, W.; Xiao, T.-H.; Gopalakrisna, K.-L.; Takenaka, M.; Tsang, H.K.; Goda, K. Focusing subwavelength grating coupler for mid-infrared suspended membrane germanium waveguides. Opt. Lett. 2017, 42, 2094–2097. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Zhang, S.; Gao, H.; Murugan, G.S.; Liu, T.; Cheng, Z. Blazed subwavelength grating coupler. Photonics Res. 2023, 11, 189–195. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. Subwavelength Grating Double Slot Waveguide Racetrack Ring Resonator for Refractive Index Sensing Application. Sensors 2020, 20, 3416. [Google Scholar] [CrossRef]
- Penadés, J.S.; Alonso-Ramos, C.; Khokhar, A.Z.; Nedeljkovic, M.; Boodhoo, L.A.; Ortega-Moñux, A.; Molina-Fernández, I.; Cheben, P.; Mashanovich, G.Z. Suspended SOI waveguide with sub-wavelength grating cladding for mid-infrared. Opt. Lett. 2014, 39, 5661–5664. [Google Scholar] [CrossRef]
- Liu, W.; Ma, Y.; Chang, Y.; Dong, B.; Wei, J.; Ren, Z.; Lee, C. Suspended silicon waveguide platform with subwavelength grating metamaterial cladding for long-wave infrared sensing applications. Nanophotonics 2021, 10, 1861–1870. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Butt, M.A.; Khonina, S.N. Silicon photonic devices realized on refractive index engineered subwavelength grating waveguides—A review—ScienceDirect. Opt. Laser Technol. 2021, 138, 106863. Available online: https://www.sciencedirect.com/science/article/pii/S0030399220314961?via%3Dihub (accessed on 16 August 2023). [CrossRef]
- Heideman, R.; Kooyman, R.; Greve, J. Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor. Sens. Actuators B Chem. 1993, 10, 209–217. [Google Scholar] [CrossRef]
- Densmore, A.; Vachon, M.; Xu, D.-X.; Janz, S.; Ma, R.; Li, Y.-H.; Lopinski, G.; Delâge, A.; Lapointe, J.; Luebbert, C. Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection. Opt. Lett. 2009, 34, 3598–3600. [Google Scholar] [CrossRef]
- Ksendzov, A.; Lin, Y. Integrated optics ring-resonator sensors for protein detection. Opt. Lett. 2005, 30, 3344–3346. [Google Scholar] [CrossRef]
- Ciminelli, C.; Dell’Olio, F.; Conteduca, D.; Campanella, C.M.; Armenise, M.N. High performance SOI microring resonator for biochemical sensing. Opt. Laser Technol. 2014, 59, 60–67. [Google Scholar] [CrossRef]
- Ouyang, H.; Christophersen, M.; Viard, R.; Miller, B.L.; Fauchet, P.M. Macroporous silicon microcavities for macromolecule detection. Adv. Funct. Mater. 2005, 15, 1851–1859. [Google Scholar] [CrossRef]
- Chow, E.; Grot, A.; Mirkarimi, L.W.; Sigalas, M.; Girolami, G. Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt. Lett. 2004, 29, 1093–1095. [Google Scholar] [CrossRef]
- Fard, S.T.; Grist, S.M.; Donzella, V.; Schmidt, S.A.; Flueckiger, J.; Wang, X.; Shi, W.; Millspaugh, A.; Webb, M.; Ratner, D.M. Label-free silicon photonic biosensors for use in clinical diagnostics. In Proceedings of the Silicon Photonics VIII, San Francisco, CA, USA, 2–7 February 2013; SPIE: Bellingham, WA, USA, 2013; Volume 8629, pp. 49–62. [Google Scholar]
- Heideman, R.G.; Kooyman, R.P.H.; Greve, J. Development of an optical waveguide interferometric immunosensor. Sens. Actuators B Chem. 1991, 4, 297–299. [Google Scholar] [CrossRef]
- Brandenburg, A.; Krauter, R.; Künzel, C.; Stefan, M.; Schulte, H. Interferometric sensor for detection of surface-bound bioreactions. Appl. Opt. 2000, 39, 6396–6405. [Google Scholar] [CrossRef]
- Tu, X.; Song, J.; Liow, T.-Y.; Park, M.K.; Yiying, J.Q.; Kee, J.S.; Yu, M.; Lo, G.-Q. Thermal independent Silicon-Nitride slot waveguide biosensor with high sensitivity. Opt. Express 2012, 20, 2640–2648. [Google Scholar] [CrossRef]
- Selmi, M.; Gazzah, M.H.; Belmabrouk, H. Optimization of microfluidic biosensor efficiency by means of fluid flow engineering. Sci. Rep. 2017, 7, 5721. [Google Scholar] [CrossRef]
- Kumaar, P.; Sivabramanian, A. Design and Bulk Sensitivity Analysis of a Silicon Nitride Photonic Biosensor for Cancer Cell Detection. Int. J. Opt. 2022, 2022, 6085833. [Google Scholar] [CrossRef]
- Kundal, S.; Khandelwal, A. Optimization of Sensitivity and Q-Factor of Ring Resonator Based Label Free Biosensor. In Proceedings of the 2022 Workshop on Recent Advances in Photonics (WRAP), Mumbai, India, 4–6 March 2022; pp. 1–2. [Google Scholar]
- Bahadoran, M.; Seyfari, A.K.; Sanati, P.; Chua, L.S. Label free identification of the different status of anemia disease using optimized double-slot cascaded microring resonator. Sci. Rep. 2022, 12, 5548. [Google Scholar] [CrossRef]
- Lin, V.S.Y.; Motesharei, K.; Dancil, K.P.S.; Sailor, M.J.; Ghadiri, M.R. A porous silicon-based optical interferometric biosensor. Science 1997, 278, 840–843. [Google Scholar] [CrossRef] [PubMed]
- Harraz, F.A. Porous silicon chemical sensors and biosensors: A review. Sens. Actuators B Chem. 2014, 202, 897–912. [Google Scholar] [CrossRef]
- Lee, M.; Fauchet, P.M. Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Opt. Express 2007, 15, 4530–4535. [Google Scholar] [CrossRef] [PubMed]
- Benelarbi, D.; Bouchemat, T.; Bouchemat, M. Study of photonic crystal microcavities coupled with waveguide for biosensing applications. Opt. Quantum Electron. 2017, 49, 347. [Google Scholar] [CrossRef]
- Konopsky, V.; Mitko, T.; Aldarov, K.; Alieva, E.; Basmanov, D.; Moskalets, A.; Matveeva, A.; Morozova, O.; Klinov, D. Photonic crystal surface mode imaging for multiplexed and high-throughput label-free biosensing. Biosens. Bioelectron. 2020, 168, 112575. [Google Scholar] [CrossRef]
- Chupradit, S.; Ashfaq, S.; Bokov, D.; Suksatan, W.; Jalil, A.T.; Alanazi, A.M.; Sillanpaa, M. Ultra-Sensitive Biosensor with Simultaneous Detection (of Cancer and Diabetes) and Analysis of Deformation Effects on Dielectric Rods in Optical Microstructure. Coatings 2021, 11, 1564. [Google Scholar] [CrossRef]
- Baraty, F.; Hamedi, S. Label-Free cancer cell biosensor based on photonic crystal ring resonator. Results Phys. 2023, 46, 106317. [Google Scholar] [CrossRef]
- Mohammed, N.A.; Khedr, O.E.; El-Rabaie, E.-S.M.; Khalaf, A.A.M. Brain tumors biomedical sensor with high-quality factor and ultra-compact size based on nanocavity 2D photonic crystal. Alex. Eng. J. 2023, 64, 527–540. [Google Scholar] [CrossRef]
- Voronkov, G.S.; Aleksakina, Y.V.; Ivanov, V.V.; Zakoyan, A.G.; Stepanov, I.V.; Grakhova, E.P.; Butt, M.A.; Kutluyarov, R.V. Enhancing the Performance of the Photonic Integrated Sensing System by Applying Frequency Interrogation. Nanomaterials 2023, 13, 193. [Google Scholar] [CrossRef]
- Butt, M.A.; Piramidowicz, R. Standard slot waveguide and double hybrid plasmonic waveguide configurations for enhanced evanescent field absorption methane gas sensing. Photonics Lett. Pol. 2022, 14, 10–12. [Google Scholar] [CrossRef]
- Wu, J.; Yue, G.; Chen, W.; Xing, Z.; Wang, J.; Wong, W.R.; Cheng, Z.; Set, S.Y.; Senthil Murugan, G.; Wang, X.; et al. On-Chip Optical Gas Sensors Based on Group-IV Materials. ACS Photonics 2020, 7, 2923–2940. [Google Scholar] [CrossRef]
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2012, 24, 012004. [Google Scholar] [CrossRef]
- Yebo, N.A.; Taillaert, D.; Roels, J.; Lahem, D.; Debliquy, M.; Van Thourhout, D.; Baets, R. Silicon-on-insulator (SOI) ring resonator-based integrated optical hydrogen sensor. IEEE Photonics Technol. Lett. 2009, 21, 960–962. [Google Scholar] [CrossRef]
- Dullo, F.T.; Lindecrantz, S.; Jágerská, J.; Hansen, J.H.; Engqvist, M.; Solbø, S.A.; Hellesø, O.G. Sensitive on-chip methane detection with a cryptophane-A cladded Mach-Zehnder interferometer. Opt. Express 2015, 23, 31564–31573. [Google Scholar] [CrossRef] [PubMed]
- Kishikawa, H.; Sato, M.; Goto, N.; Yanagiya, S.; Kaito, T.; Liaw, S.K. An optical ammonia gas sensor with adjustable sensitivity using a silicon microring resonator covered with monolayer graphene. Jpn. J. Appl. Phys. 2019, 58, SJJD05. [Google Scholar] [CrossRef]
- Gervais, A.; Jean, P.; Shi, W.; LaRochelle, S. Design of slow-light subwavelength grating waveguides for enhanced on-chip methane sensing by absorption spectroscopy. IEEE J. Sel. Top. Quantum Electron. 2018, 25, 5200308. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Butt, M.A.; Khonina, S.N. Carbon Dioxide Gas Sensor Based on Polyhexamethylene Biguanide Polymer Deposited on Silicon Nano-Cylinders Metasurface. Sensors 2021, 21, 378. [Google Scholar] [CrossRef]
- Hänsel, A.; Heck, M.J.R. Opportunities for photonic integrated circuits in optical gas sensors. J. Phys. Photonics 2020, 2, 012002. [Google Scholar] [CrossRef]
- Prieto, F.; Sepúlveda, B.; Calle, A.; Llobera, A.; Domínguez, C.; Abad, A.; Montoya, A.; Lechuga, L.M. An integrated optical interferometric nanodevice based on silicon technology for biosensor applications. Nanotechnology 2003, 14, 907. [Google Scholar] [CrossRef]
- Yang, R.; Yu, Y.S.; Xue, Y.; Chen, C.; Chen, Q.-D.; Sun, H.-B. Single S-tapered fiber Mach–Zehnder interferometers. Opt. Lett. 2011, 36, 4482–4484. [Google Scholar] [CrossRef]
- El Shamy, R.S.; Swillam, M.A.; Khalil, D.A. Mid Infrared Integrated MZI Gas Sensor Using Suspended Silicon Waveguide. J. Light. Technol. 2019, 37, 4394–4400. [Google Scholar] [CrossRef]
- El Shamy, R.S.; Swillam, M.A.; ElRayany, M.M.; Sultan, A.; Li, X. Compact Gas Sensor Using Silicon-on-Insulator Loop-Terminated Mach–Zehnder Interferometer. Photonics 2022, 9, 8. [Google Scholar] [CrossRef]
- Taha, A.M.; Yousuf, S.; Dahlem, M.S.; Viegas, J. Highly-Sensitive Unbalanced MZI Gas Sensor Assisted With a Temperature-Reference Ring Resonator. IEEE Photonics J. 2022, 14, 6657709. [Google Scholar] [CrossRef]
- Troia, B.; Passaro, V.M.N. Investigation of a novel silicon-on-insulator Rib-Slot photonic sensor based on the vernier effect and operating at 3.8 µm. J. Eur. Opt. Soc. Rapid Publ. 2014, 9, 14005. Available online: http://www.jeos.org/index.php/jeos_rp/article/view/951 (accessed on 18 July 2023). [CrossRef]
- Zhang, W.; Zhang, X.; Zhang, X.; Jin, H.; Jin, Q.; Jian, J. A single slot micro-ring structure for simultaneous CO2 and CH4 gas sensing. Eur. Phys. J. Appl. Phys. 2018, 82, 30502. [Google Scholar] [CrossRef]
- Tomono, Y.; Hoshi, H.; Shimizu, H. CO2 Detection with Si Slot Waveguide Ring Resonators toward On-chip Specific Gas Sensing. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 5–10 May 2019; Optica Publishing Group: San Jose, CA, USA, 2019; p. JTh2A.96. [Google Scholar]
- Yebo, N.A.; Bogaerts, W.; Hens, Z.; Baets, R. On-Chip Arrayed Waveguide Grating Interrogated Silicon-on-Insulator Microring Resonator-Based Gas Sensor. IEEE Photonics Technol. Lett. 2011, 23, 1505–1507. [Google Scholar] [CrossRef]
- Robinson, J.T.; Chen, L.; Lipson, M. On-chip gas detection in silicon optical microcavities. Opt. Express 2008, 16, 4296–4301. [Google Scholar] [CrossRef]
- Liu, C.; Sang, C.; Wu, X.; Cai, J.; Wang, J. Grating double-slot micro-ring resonator for sensing. Opt. Commun. 2021, 499, 127280. [Google Scholar] [CrossRef]
- Li, H.; Wu, L.; Jin, Y.; Wu, A. High Sensitivity Refractive Index Sensor Based on Trapezoidal Subwavelength Grating Slot Microring Resonator. IEEE Photonics J. 2023, 15, 6801706. [Google Scholar] [CrossRef]
- Saeidi, P.; Jakoby, B.; Pühringer, G.; Tortschanoff, A.; Stocker, G.; Dubois, F.; Spettel, J.; Grille, T.; Jannesari, R. Designing Mid-Infrared Gold-Based Plasmonic Slot Waveguides for CO2-Sensing Applications. Sensors 2021, 21, 2669. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L.; Butt, M.A. Evanescent Field Ratio Enhancement of a Modified Ridge Waveguide Structure for Methane Gas Sensing Application. IEEE Sens. J. 2020, 20, 8469–8476. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Silicon on silicon dioxide slot waveguide evanescent field gas absorption sensor. J. Mod. Opt. 2018, 65, 174–178. [Google Scholar] [CrossRef]
- Butt, M.A.; Degtyarev, S.A.; Khonina, S.N.; Kazanskiy, N.L. An evanescent field absorption gas sensor at mid-IR 3.39 μm wavelength. J. Mod. Opt. 2017, 64, 1892–1897. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. Polarization-Insensitive Hybrid Plasmonic Waveguide Design for Evanescent Field Absorption Gas Sensor. Photonic Sens. 2021, 11, 279–290. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Y.; Fan, X. Highly versatile fiber-based optical Fabry-Pérot gas sensor. Opt. Express 2009, 17, 2731–2738. [Google Scholar] [CrossRef]
- Hossein-Babaei, F.; Paknahad, M.; Ghafarinia, V. A miniature gas analyzer made by integrating a chemoresistor with a microchannel. Lab Chip 2012, 12, 1874–1880. [Google Scholar] [CrossRef]
- Metehri, F.; Youcef Mahmoud, M.; Bassou, G.; Richalot, E.; Bourouina, T. Stable optofluidic Fabry-Pérot resonator for liquid and gas sensing. Sens. Actuators Phys. 2018, 281, 95–99. [Google Scholar] [CrossRef]
- Tao, J.; Zhang, Q.; Xiao, Y.; Li, X.; Yao, P.; Pang, W.; Zhang, H.; Duan, X.; Zhang, D.; Liu, J. A Microfluidic-Based Fabry-Pérot Gas Sensor. Micromachines 2016, 7, 36. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Wang, Q. Optimizing the slow light properties of slotted photonic crystal waveguide and its application in a high-sensitivity gas sensing system. Meas. Sci. Technol. 2013, 24, 105109. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.N.; Wang, Q. Research advances of photonic crystal gas and liquid sensors. Sens. Actuators B Chem. 2011, 160, 1288–1297. [Google Scholar] [CrossRef]
- Feng, C.; Feng, G.-Y.; Zhou, G.R.; Chen, N.J.; Zhou, S.-H. Design of an ultracompact optical gas sensor based on a photonic crystal nanobeam cavity. Laser Phys. Lett. 2012, 9, 875. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Wang, Q. Measurement of methane concentration with cryptophane E infiltrated photonic crystal microcavity. Sens. Actuators B Chem. 2015, 209, 431–437. [Google Scholar] [CrossRef]
- Kassa-Baghdouche, L.; Cassan, E. Mid-infrared gas sensor based on high-Q/V point-defect photonic crystal nanocavities. Opt. Quantum Electron. 2020, 52, 260. [Google Scholar] [CrossRef]
- Wang, X.; Lv, J.; E, S.; Han, B.; Zhang, Y. Theoretical Design and Simulation Optimization of Photonic Crystal Cavity for Tetrahydrofuran Vapor Sensing. Phys. Status Solidi B 2019, 256, 1900221. [Google Scholar] [CrossRef]
- Jágerská, J.; Zhang, H.; Diao, Z.; Thomas, N.L.; Houdré, R. Refractive index sensing with an air-slot photonic crystal nanocavity. Opt. Lett. 2010, 35, 2523–2525. [Google Scholar] [CrossRef]
- Li, K.; Li, J.; Song, Y.; Fang, G.; Li, C.; Feng, Z.; Su, R.; Zeng, B.; Wang, X.; Jin, C. Ln Slot Photonic Crystal Microcavity for Refractive Index Gas Sensing. IEEE Photonics J. 2014, 6, 6802509. [Google Scholar] [CrossRef]
Modulation Principle | Structure | Ebit (fJ/bit) | ER (dB) | References |
---|---|---|---|---|
Electro-refractive | MZI | 13.21 | 20.36 | [73] |
Electro-optic | MZI | 30.18 | - | [71] |
Electro-optic | MZI | - | 30 | [72] |
Electro-optic | MZI | 30 | - | [70] |
Carrier-depletion | Ring | - | 3.9 | [88] |
Carrier-depletion | Ring | 50 | 6.5 | [87] |
Carrier-injection | Ring | 120 | 7 | [79] |
Carrier-depletion | Ring | 680 | 8 | [81] |
Carrier-depletion | Ring | - | >10 | [83] |
Material | WL (nm) | Dark Current (nA) | Dark Current Density (mA/cm2) | Responsivity (A/W) | BW (GHz) | Speed (Gbps) | Refs |
---|---|---|---|---|---|---|---|
Ge | 1550 | 35 | - | 0.81 | 75 | 64 | [119] |
Ge | 1550 | 42 | 18.5 | 0.47 | 36 | 40 | [120] |
Ge | 1550 | 1 | 5 | 0.82 | 29 | 50 | [124] |
GeSn | 1887 | - | 73 | 0.017 | - | - | [131] |
GeSn | 2000 | 0.0014 | - | 0.016 | - | - | [132] |
GeSn | 2000 | - | 125 | 0.014 | 30 | - | [133] |
InGaAs/InAlAs/InP | 1550 | 10 | 0.8 | 0.79 | 9 | - | [141] |
InP/InGaAs | 1550 | 0.55 | - | 0.3 | >40 | 40 | [137] |
All Si | 1550 | - | - | 0.0728 | ~7 | 15 | [148] |
All Si | 1550 | - | - | 0.0033 | - | 30 | [149] |
All Si | 1310 | - | - | 0.53 | 25.5 | 100 | [151] |
Sensor Configuration | Sensitivity (nm/RIU) | Q-Factor | LOD | References |
---|---|---|---|---|
Si3N4-based MZI | 568 | - | - | [179] |
Silica-based RR | 200 | 2000 | - | [180] |
Si/SiO2 double-slot-WG, MRR | 1024 | - | 4.88 × 10−6 RIU | [181] |
SOI-based PhC WG, microcavity | 97 | - | 0.0055 fg * | [185] |
PhCs, nanocavities on Si | 20,393 | - | - | [187] |
Si PhCs, RR | 308.5 | 3803.55 | - | [188] |
Si-based PhCs | 1332 | 16,254 | 9.08 × 10−6 RIU | [189] |
Sensor | Configuration | Gas | Sensitivity (nm/RIU) | Q-Factor | LOD (RIU) | Refs. |
---|---|---|---|---|---|---|
MZI | RR-MZI | He, N2 | 1458 5500 (Suspended MZI) | - | 8.5 × 10−5 | [204] |
RR | RIB-slotted RR | CO2, CH4 | 20,600 | - | 3.675 × 10−4 | [205] |
RR | Slotted MRR | CH4, CO2 | 2308 | - | - | [206] |
RR | Slotted RR | CO2 | 300 | - | - | [207] |
RR | Slotted MRR | Acetylene | 490 | 5000 | 10−5 | [209] |
SPP | PSWG | CO2 | - | - | 274.6 (Free-standing structure) 70.1 (Asymmetric structure) | [212] |
PhC | Cryptophane-E-infiltrated PhC microcavity | CH4 | 363.8 | 12,923 | - | [224] |
PhC | PhC cavity | Tetrahydrofuran (THF) vapor | 194 | 2 × 105 | 4 × 10−5 | [226] |
PhC | PhC air-slot cavity | CO2, N2, He | 510 | 2.6 × 104 | 1 × 10−5 | [227] |
PhC | Slot PhC microcavities | N2, CO2, He | 421 | >3.0 × 104 | 1 × 10−5 | [228] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahbaz, M.; Butt, M.A.; Piramidowicz, R. Breakthrough in Silicon Photonics Technology in Telecommunications, Biosensing, and Gas Sensing. Micromachines 2023, 14, 1637. https://doi.org/10.3390/mi14081637
Shahbaz M, Butt MA, Piramidowicz R. Breakthrough in Silicon Photonics Technology in Telecommunications, Biosensing, and Gas Sensing. Micromachines. 2023; 14(8):1637. https://doi.org/10.3390/mi14081637
Chicago/Turabian StyleShahbaz, Muhammad, Muhammad A. Butt, and Ryszard Piramidowicz. 2023. "Breakthrough in Silicon Photonics Technology in Telecommunications, Biosensing, and Gas Sensing" Micromachines 14, no. 8: 1637. https://doi.org/10.3390/mi14081637
APA StyleShahbaz, M., Butt, M. A., & Piramidowicz, R. (2023). Breakthrough in Silicon Photonics Technology in Telecommunications, Biosensing, and Gas Sensing. Micromachines, 14(8), 1637. https://doi.org/10.3390/mi14081637