Preparation and Characterization of Multielement Composite Oxide Nanomaterials Containing Ce, Zr, Y, and Yb via Continuous Hydrothermal Flow Synthesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. CHFS System and Microreactor
2.2. Materials
2.3. Characterization
2.3.1. SEM-EDS
2.3.2. ICP-AES
2.3.3. XRD
2.3.4. FTIR
2.3.5. RAMAN
2.3.6. TEM-SEAD-EDS
2.3.7. BET Specific Surface Area Test
2.3.8. Oxygen Storage Capacity (OSC) Test
2.3.9. H2-TPR Test
2.3.10. Electrochemical Impedance Spectroscopy
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, Z.; Meng, X.; Liu, W.; Wei, Z. Study on hydrogen permeation of Ni-BaZr0.1Ce0.7Y0.2O3−δ asymmetric cermet membrane. Int. J. Energy Res. 2019, 43, 4959–4966. [Google Scholar] [CrossRef]
- Lei Yang, S.W.; Blinn, K.; Liu, M.; Liu, Z.; Cheng, Z.; Liu, M. Enhanced Sulfur and CokingTolerance of a Mixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–d. Science 2009, 326, 126–129. [Google Scholar] [CrossRef] [PubMed]
- Fabris, S.; Paxton, A.T.; Finnis, M.W. A stabilization mechanism of zirconia based on oxygen vacancies only. Acta Mater. 2002, 50, 5171–5178. [Google Scholar] [CrossRef]
- Lari, A.; Khodadadi, A.; Mortazavi, Y. Semiconducting metal oxides as electrode material for YSZ-based oxygen sensors. Sens. Actuators B Chem. 2009, 139, 361–368. [Google Scholar] [CrossRef]
- Zacate, M.O.; Minervini, L.; Bradfield, D.J.; Grimes, R.W.; Sickafus, K.E. Defect cluster formation in M2O3-doped cubic ZrO2. Solid State Ion. 2000, 128, 243–254. [Google Scholar] [CrossRef]
- Cabanas, A.; Darr, J.A.; Poliakoff, M.; Lester, E. A continuous and clean one-step synthesis of nano-particulate Ce1−xZrxO2 solid solutions in near-critical water. Chem. Commun. 2000, 11, 901–902. [Google Scholar] [CrossRef]
- Bhosale, A.K.; Shinde, P.; Tarwal, D.N.L.; Pawar, R.; Kadam, P.M.; Patil, P. Synthesis and characterization of highly stable optically passive CeO2–ZrO2 counter electrode. Electrochim. Acta 2010, 55, 1900–1906. [Google Scholar] [CrossRef]
- Ahmed, I.; Eriksson, S.G.; Ahlberg, E.; Knee, C.S.; Götlind, H.; Johansson, L.G.; Karlsson, M.; Matic, A.; Börjesson, L. Structural study and proton conductivity in Yb-doped BaZrO3. Solid State Ion. 2007, 178, 515–520. [Google Scholar] [CrossRef]
- Xu, J.; Chen, H.F.; Yang, G.; Luo, H.J.; Gao, Y.F. Elements Diffusion and Phase Transitions in Yb/Y Co-doped Zirconia Ceramic under Molten-salt Corrosive Environment. Chin. J. Mater. Res. 2016, 30, 627–633. [Google Scholar]
- Vidmar, P.; Fornasiero, P.; Kašpar, J.; Gubitosa, G.; Graziani, M. Effects of Trivalent Dopants on the Redox Properties of Ce0.6Zr0.4O2 Mixed Oxide. J. Catal. 1997, 171, 160–168. [Google Scholar] [CrossRef]
- Zuo, C.; Zha, S.; Liu, M.; Hatano, M.; Uchiyama, M. Ba(Zr0.1Ce0.7Y0.2)O3–δ as an Electrolyte for Low-Temperature Solid-Oxide Fuel Cells. Adv. Mater. 2006, 18, 3318–3320. [Google Scholar] [CrossRef]
- Zuo, C.; Dorris, S.E.; Balachandran, U.; Liu, M. Effect of Zr-Doping on the Chemical Stability and Hydrogen Permeation of the Ni−BaCe0.8Y0.2O3−α Mixed Protonic−Electronic Conductor. Chem. Mater. 2006, 18, 4647–4650. [Google Scholar] [CrossRef]
- Grgicak, C.M.; Green, R.G.; Du, W.-F.; Giorgi, J.B. Synthesis and Characterization of NiO–YSZ Anode Materials: Precipitation, Calcination, and the Effects on Sintering. J. Am. Ceram. Soc. 2005, 88, 3081–3087. [Google Scholar] [CrossRef]
- Lin, J.-D.; Wu, Z.-L. Synthesis of NiO-Deposited YSZ Composite Powders by Urea Hydrolysis. J. Am. Ceram. Soc. 2009, 92, 2555–2565. [Google Scholar] [CrossRef]
- Ksapabutr, B.; Gulari, E.; Wongkasemjit, S. One-pot synthesis and characterization of novel sodium tris(glycozirconate) and cerium glycolate precursors and their pyrolysis. Mater. Chem. Phys. 2004, 83, 34–42. [Google Scholar] [CrossRef]
- Eslamian, M.; Ahmed, M.; Ashgriz, N. Modeling of Nano-particle Formation during Spray Pyrolysis. Nanotechnology 2006, 17, 1674–1685. [Google Scholar] [CrossRef]
- Rambo, C.R.; Cao, J.; Sieber, H. Preparation and properties of highly porous, biomorphic YSZ ceramics. Mater. Chem. Phys. 2004, 87, 345–352. [Google Scholar] [CrossRef]
- Zhang, Y.-W.; Yan, Z.-G.; Liao, F.-H.; Liao, C.-S.; Yan, C.-H. Citrate gel synthesis and characterization of (ZrO2)0.85(REO1.5)0.15 (RE = Y, Sc) solid solutions. Mater. Res. Bull. 2004, 39, 1763–1777. [Google Scholar] [CrossRef]
- Combemale, L.; Caboche, G.; Stuerga, D.; Chaumont, D. Microwave synthesis of yttria stabilized zirconia. Mater. Res. Bull. 2005, 40, 529–536. [Google Scholar] [CrossRef]
- Sayılkan, F.; Asiltürk, M.; Burunkaya, E.; Arpaç, E. Hydrothermal synthesis and characterization of nanocrystalline ZrO2 and surface modification with 2-acetoacetoxyethyl methacrylate. J. Sol-Gel Sci. Technol. 2009, 51, 182–189. [Google Scholar] [CrossRef]
- Adschiri, T.; Kanazawa, K.; Arai, K. Rapid and Continuous Hydrothermal Crystallization of Metal Oxide Particles in Supercritical Water. J. Am. Ceram. Soc. 1992, 75, 1019–1022. [Google Scholar] [CrossRef]
- Adschiri, T.; Kanazawa, K.; Arai, K. Rapid and Continuous Hydrothermal Synthesis of Boehmite Particles in Subcritical and Supercritical Water. J. Am. Ceram. Soc. 1992, 75, 2615–2618. [Google Scholar] [CrossRef]
- Sue, K.; Murata, K.; Kimura, K.; Arai, K. Continuous synthesis of zinc oxide nanoparticles in supercritical water. Green Chem. 2003, 5, 659–662. [Google Scholar] [CrossRef]
- Sue, K.; Kimura, K.; Murata, K.; Arai, K. Effect of cations and anions on properties of zinc oxide particles synthesized in supercritical water. J. Supercrit. Fluids 2004, 30, 325–331. [Google Scholar] [CrossRef]
- Blood, P.J.; Denyer, J.P.; Azzopardi, B.J.; Poliakoff, M.; Lester, E. A versatile flow visualisation technique for quantifying mixing in a binary system: Application to continuous supercritical water hydrothermal synthesis (SWHS). Chem. Eng. Sci. 2004, 59, 2853–2861. [Google Scholar] [CrossRef]
- Lester, E.; Blood, P.; Denyer, J.; Giddings, D.; Azzopardi, B.; Poliakoff, M. Reaction engineering: The supercritical water hydrothermal synthesis of nano-particles. J. Supercrit. Fluids 2006, 37, 209–214. [Google Scholar] [CrossRef]
- Ma, C.Y.; Chen, M.; Wang, X.Z. Modelling and simulation of counter-current and confined jet reactors for hydrothermal synthesis of nano-materials. Chem. Eng. Sci. 2014, 109, 26–37. [Google Scholar] [CrossRef]
- Ma, C.Y.; Liu, J.J.; Zhang, Y.; Wang, X.Z. Simulation for scale-up of a confined jet mixer for continuous hydrothermal flow synthesis of nanomaterials. J. Supercrit. Fluids 2015, 98, 211–221. [Google Scholar] [CrossRef]
- Li, Q.Y.; Liu, L.Y.; Wang, Z.H.; Wang, X.Z. Continuous Hydrothermal Flow Synthesis and Characterization of ZrO2 Nanoparticles Doped with CeO2 in Supercritical Water. Nanomaterials 2022, 12, 15. [Google Scholar] [CrossRef]
- Guo, G.-Y.; Chen, Y.-L.; Ying, W.-J. Thermal, spectroscopic and X-ray diffractional analyses of zirconium hydroxides precipitated at low pH values. Mater. Chem. Phys. 2004, 84, 308–314. [Google Scholar] [CrossRef]
- Kanade, K.G.; Baeg, J.O.; Apte, S.K.; Prakash, T.L.; Kale, B.B. Synthesis and characterization of nanocrystallined zirconia by hydrothermal method. Mater. Res. Bull. 2008, 43, 723–729. [Google Scholar] [CrossRef]
- Liu, X.; Wang, T.; Liu, J.; Jiang, F.; Tang, H.; Feng, G.; Jiang, W. Preparation, characterization and growth mechanism of ZrO2 nanosheets. Ceram. Int. 2020, 46, 4864–4869. [Google Scholar] [CrossRef]
- Gurushantha, K.; Anantharaju, K.S.; Nagabhushana, H.; Sharma, S.C.; Vidya, Y.S.; Shivakumara, C.; Nagaswarupa, H.P.; Prashantha, S.C.; Anilkumar, M.R. Facile green fabrication of iron-doped cubic ZrO2 nanoparticles by Phyllanthus acidus: Structural, photocatalytic and photoluminescent properties. J. Mol. Catal. A Chem. 2015, 397, 36–47. [Google Scholar] [CrossRef]
- Wang, S.F.; Gu, F.; Lü, M.K.; Yang, Z.S.; Zhou, G.J.; Zhang, H.P.; Zhou, Y.; Wang, S.M. Structure evolution and photoluminescence properties of ZrO2:Eu3+ nanocrystals. Opt. Mater. 2006, 28, 1222–1226. [Google Scholar] [CrossRef]
- Reddy, C.V.; Babu, B.; Reddy, I.N.; Shim, J. Synthesis and characterization of pure tetragonal ZrO2 nanoparticles with enhanced photocatalytic activity. Ceram. Int. 2018, 44, 6940–6948. [Google Scholar] [CrossRef]
- Aneggi, E.; Boaro, M.; de Leitenburg, C.; Dolcetti, G.; Trovarelli, A. Insights into the redox properties of ceria-based oxides and their implications in catalysis. J. Alloys Compd. 2006, 408, 1096–1102. [Google Scholar] [CrossRef]
Salt Mass (g) | ZrO(NO3)2·x H2O | Y(NO3)3·6H2O | CeN3O9·6H2O | YbN3O9·5H2O | Molar Ratio |
---|---|---|---|---|---|
CYZ1 | 20.2326 | 2.8726 | 2.1711 | ------ | Ce:Y:Zr = 5:7.5:87.5 |
CYZ2 | 2.3123 | 7.6602 | 30.3954 | ------ | Ce:Y:Zr = 7:2:1 |
CYbZ | 2.3123 | ------- | 30.3954 | 8.9826 | Ce:Yb:Zr = 7:2:1 |
CYYbZ | 2.3123 | 3.8301 | 30.3954 | 4.4913 | Ce:Y:Yb:Zr = 7:1:1:1 |
(Molar Ratio) | CYZ1 (Ce:Y:Zr) | CYZ2 (Ce:Y:Zr) | CYbZ (Ce:Yb:Zr) | CYYbZ (Ce:Y:Yb:Zr) |
---|---|---|---|---|
EDS | 0.94:1.26:14.69 | 14.43:3.24:1.98 | 18.02:5.04:2.71 | 15.76:1.92:2.28:2.13 |
ICP-AES | 1.18:1.53:16.07 | 15.39:3.76:2.24 | 16.81:4.91:2.53 | 18.73:2.19:2.71:2.59 |
Data | CYZ1 | CYZ2 | CYbZ | CYYbZ |
---|---|---|---|---|
BET surface area (m2/g) | 145.26 | 123.04 | 108.33 | 138.69 |
C | 71.87 | 108.73 | 95.26 | 97.86 |
Correlation coefficient | 0.999 | 0.999 | 0.999 | 0.999 |
Samples | CYZ1 | CYZ2 | CYbZ | CYYbZ |
---|---|---|---|---|
OSC (μmol/g) | 306.81 | 545.95 | 331.87 | 381.06 |
T (°C) | CYZ1 σ/S·cm−1 | CYZ2 σ/S·cm−1 | CYbZ σ/S·cm−1 | CYYbZ σ/S·cm−1 |
---|---|---|---|---|
500 | 4.6279 × 10−6 | 4.7817 × 10−6 | 3.8585 × 10−5 | 1.2582 × 10−5 |
550 | 2.1348 × 10−5 | 2.0508 × 10−5 | 7.9124 × 10−5 | 4.7505 × 10−5 |
600 | 5.8468 × 10−5 | 5.0582 × 10−5 | 0.000124 | 0.0001987 |
650 | 0.0001445 | 0.0001018 | 0.0003543 | 0.0006076 |
700 | 0.0002970 | 0.0002185 | 0.0006911 | 0.001128 |
750 | 0.0005524 | 0.0004179 | 0.001279 | 0.002157 |
800 | 0.001010 | 0.0006999 | 0.002413 | 0.003267 |
850 | 0.001779 | 0.001181 | 0.003569 | 0.004974 |
900 | 0.002874 | 0.001365 | 0.005226 | 0.007369 |
950 | 0.004248 | 0.001812 | 0.007753 | 0.01080 |
1000 | 0.006284 | 0.002640 | 0.01129 | 0.01586 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Wang, Z.; Wang, X. Preparation and Characterization of Multielement Composite Oxide Nanomaterials Containing Ce, Zr, Y, and Yb via Continuous Hydrothermal Flow Synthesis. Micromachines 2024, 15, 154. https://doi.org/10.3390/mi15010154
Li Q, Wang Z, Wang X. Preparation and Characterization of Multielement Composite Oxide Nanomaterials Containing Ce, Zr, Y, and Yb via Continuous Hydrothermal Flow Synthesis. Micromachines. 2024; 15(1):154. https://doi.org/10.3390/mi15010154
Chicago/Turabian StyleLi, Qingyun, Zihua Wang, and Xuezhong Wang. 2024. "Preparation and Characterization of Multielement Composite Oxide Nanomaterials Containing Ce, Zr, Y, and Yb via Continuous Hydrothermal Flow Synthesis" Micromachines 15, no. 1: 154. https://doi.org/10.3390/mi15010154
APA StyleLi, Q., Wang, Z., & Wang, X. (2024). Preparation and Characterization of Multielement Composite Oxide Nanomaterials Containing Ce, Zr, Y, and Yb via Continuous Hydrothermal Flow Synthesis. Micromachines, 15(1), 154. https://doi.org/10.3390/mi15010154