Recent Progress in Semitransparent Organic Solar Cells: Photoabsorbent Materials and Design Strategies
Abstract
:1. Introduction
2. Fundamentals of ST-OSCs
2.1. Power Conversion Efficiency (PCE)
2.2. Average Visible Transmittance (AVT)
2.3. Color Perception
2.4. Light Utilization Efficiency (LUE)
2.5. Quantum Utilization Efficiency (QUE)
2.6. Bifaciality Factor
3. Selection of Photoabsorbent Materials for ST-OSCs
3.1. Current Progress in Non-fullerene Acceptors
3.1.1. Indacenodithiophene (IDT)- and Indacenodithienothiophene (IDTT)-Based Acceptors
Device Structure a | NFA | HOMO eV | LUMO eV | Egopt eV | Voc V | Jsc mAcm2 | FF % | PCE % (ST-OSC) | PCE % (OSC) | AVT % | LUE % | CRI | CIE 1931 (x, y) | Ref. |
Glass/PES/PH1000/PEIE/P3HT:IDT-2BR/PH1000-T | IDT-2BR | −5.52 | −3.69 | 1.68 | 0.84 | 6.23 | 62 | 3.22 | 4.20 | 50 | 1.61 | − | − | [50] |
ITO/ZnO/P3HT:IDT-BR/MoO3/Ag | IDTBR | −5.51 | −3.88 | 1.63 | 0.72 | 13.9 | 60 | − | 6.30 | − | − | − | − | [51] |
glass/ITO/ZnO/PvBDTTAZ:O-IDTBR/V2O5/Al | O-IDTBR | −5.51 | −3.88 | 1.63 | 1.08 | 16.26 | 63 | − | 11.6 | − | − | − | − | [52] |
ITO/ZnO NP/PTB7-Th:IDTBR/PIL | IDTBR | − | − | − | 0.98 | 11.35 | 57 | 6.32 | 8.50 | 35.4 | 2.23 | − | − | [53] |
ITO/PEDOT:PSS/PTB7-TH:ITIC/PDIN/Al | ITIC | −5.48 | −3.83 | 1.59 | 0.81 | 14.21 | 59 | − | 6.8 | − | − | − | − | [44] |
ITO/ZnO/reg-PThE:ITIC/MoO3/Ag | ITIC | − | − | − | 0.91 | 14.28 | 66 | 8.69 | − | 24.2 | 2.1 | − | − | [54] |
ITO/ZnO/PFBFB-T:C8ITIC/ MoO3/Ag/MoO3 | C8-ITIC | −5.63 | −3.91 | 1.72 b | 0.92 | 17.34 | 70 | 9.8 | − | 22 | 2.15 | − | − | [55] |
ITO/PEDOT:PSS/PTB7-Th:ATT-1/PFN/Al | ATT-1 | −5.50 | −3.63 | 1.54 | 0.87 | 16.48 | 70 | − | 10.07 | − | − | − | − | [56] |
ITO/ZnO/PTB7-Th:ATT-2/MoO3/Ag | ATT-2 | −5.50 | −3.90 | 1.32 | 0.71 | 18.53 | 59 | 7.74 | 9.58 | 37 | 2.86 | 94.1 | 0.281, 0.307 | [57] |
ITO/PEDOT:PSS/PTB7 Th:IEIC/PDIN/Al | IEIC | −5.42 | −3.82 | 1.57 | 0.97 | 13.55 | 48 | − | 6.31 | − | − | − | − | [60] |
ITO/PEDOT:PSS/PBDTTT-E-T:IEICO/PFN-Br/Al | IEICO | −5.32 | −3.95 | 1.34 | 0.82 | 17.7 | 58 | − | 8.40 | − | − | − | − | [61] |
ITO/PEDOT:PSS/PM6:ID-4Cl/PDINO/Au | ID-4Cl | −5.81 | −4.01 | 1.51 | 0.75 | 13.77 | 68 | 6.99 | 10.25 | 43.7 | 3.05 | − | − | [67] |
ITO/ZnO/PBDB-T-SF:IT-4F/MoO3/Al | IT-4F | −5.66 c | −4.14 c | 1.52 c | 0.88 | 20.88 | 71 | − | 13.10 | − | − | − | − | [68] |
ITO/PEDOT:PSS/PBN-S:IT-4F/ZnO/Au | IT-4F | − | − | − | 0.88 | 16.78 | 66 | 9.83 | − | 32 | 3.15 | 92 | 0.205, 0.231 | [69] |
ITO/PEDOT:PSS/J71:ITVIC/PDINO/Al | ITVIC | −5.46 | −3.97 | 1.40 | 0.89 | 14.47 | 58 | − | 7.34 | − | − | − | − | [70] |
ITO/PEDOT:PSS/J71:ITVfIC/PDINO/Al | ITVfIC | −5.56 | −4.01 | 1.37 | 0.84 | 19.73 | 59 | − | 9.72 | − | − | − | − | [70] |
ITO/PEDOT:PSS/J71:ITVffIC/PDINO/Al | ITVffIC | −5.58 | −4.04 | 1.35 | 0.81 | 20.60 | 63 | − | 10.54 | − | − | − | − | [70] |
ITO/PEDOT:PSS/PTB7-Th:ITVfIC/PDINO/Ag | ITVfIC | −5.56 | −4.01 | 1.37 | 0.74 | 17.54 | 63 | 8.21 | − | 26.40 | 2.17 | − | 0.29, 0.36 | [71] |
ITO/PEDOT:PSS/PTB7-Th: 6-IFIC/PDINO/Ag | 6-IFIC | −5.34 | −4.02 | 1.27 | 0.69 | 17.28 | 56 | 6.94 | 9.74 | 27.99 | 1.94 | 59 | 0.262, 0.318 | [72] |
ITO/PEDOT:PSS/PTB7-Th: 6-IF2F/PDINO/Ag | 6-IF2F | −5.38 | −4.07 | 1.25 | 0.64 | 20.05 | 59 | 7.87 | 11.20 | 28.04 | 2.20 | 60 | 0.263, 0.320 | [72] |
ITO/PEDOT:PSS/PTB7-Th: 6-IF4F/PDINO/Ag | 6-IF4f | −5.42 | −4.14 | 1.22 | 0.58 | 21.7 | 59 | 7.46 | 10.46 | 29.23 | 2.18 | 62 | 0.264, 0.312 | [72] |
ITO/PEDOT:PSS/PBDTTT-EFT:IEICO-4F/PFN-Br/Al | IEICO-4F | −5.44 | −4.19 | 1.24 | 0.74 | 22.80 | 59 | − | 10.00 | − | − | − | − | [73] |
ITO/PEDOT:PSS/PTB7-Th:IEICO-4F/PDIN/Al | IEICO-4F | − | − | − | 0.71 | 18.81 | 68 | 9.06 | 11.55 | 27.10 | 2.45 | − | 0.269, 0.292 | [74] |
ITO/PEDOT:PSS/J52:IEICO-4Cl/PFN-Br/Au | IEICO-4Cl | −5.56 | −4.23 | 1.23 | 0.67 | 17.20 | 55 | 6.37 | 10.10 | 35.1 | 2.24 | − | − | [75] |
ITO/PEDOT:PSS/PBDB-T:IEICO-4Cl/PFN-Br/Au | IEICO-4Cl | − | − | − | 0.72 | 15.40 | 56 | 6.24 | 9.67 | 35.7 | 2.23 | − | − | [75] |
ITO/PEDOT:PSS/PTB7-Th:IEICO-4Cl/PFN-Br/Au | IEICO-4Cl | − | − | − | 0.73 | 19.6 | 59 | 8.38 | 10.30 | 25.6 | 2.15 | − | − | [75] |
ITO/ZnO/PTB7-Th:ITIC-2F/MoOx/Ag | ITIC-2F | −5.55 | −4.15 | 1.56 | 0.75 | 16.2 | 70 | − | 8.7 | − | − | − | − | [76] |
ITO/ZnO/PTB7-Th:IOTIC-2F/MoOx/Ag | IOTIC-2F | −5.34 | −4.06 | 1.31 | 0.82 | 21.9 | 65 | − | 12.1 | − | − | − | − | [76] |
ITO/ZnO/PTB7-Th:IOTIC-2F/MoOx/Ag | ITOTIC-2F | −5.22 | −4.11 | 1.32 | 0.79 | 7.0 | 61 | − | 3.7 | − | − | − | − | [76] |
ITO/PEDOT:PSS/PTQ10:IE4F-S/PDINO/Al | IE4F-S | −5.54 | −3.89 | 1.65 b | 0.99 | 19.67 | 62 | − | 12.2 | − | − | − | − | [77] |
ITO/ZnO/PTB7-Th:IEICS-4F/MoO3/Au | IEICS-4F | −5.43 | −4.08 | 1.35 | 0.73 | 16.80 | 61 | 7.5 | 10.3 | 35 | 2.63 | − | − | [79] |
ITO/ZnO/PTB7-Th:IUIC/MoOx/Au/Ag | IUIC | −5.45 | −3.87 | 1.41 | 0.79 | 18.31 | 70 | 10.2 | 11.2 | 31 | 3.16 | 75 | 0.233, 0.287 | [80] |
ITO/ZnO/PFN/PTB7-Th:ACS8/MoO3/Au/Ag | ACS8 | −5.54 | −4.05 | 1.30 | 0.74 | 22.5 | 67 | 11.1 | 13.2 | 28.6 | 3.17 | 84 | 0.262, 0.297 | [81] |
ITO/ZnO/PCE-10:SBT-FIC/MoO3/Ag | SBT-FIC | −5.81 | −4.15 | 1.66 b | 0.70 | 18.1 | 62 | − | 7.9 | − | − | − | − | [82] |
ITO/ZnO/PCE-10:A134/MoO3/Ag | A134 | −5.54 | −4.05 | 1.49 b | 0.75 | 16.7 | 61 | − | 7.6 | − | − | − | − | [82] |
MgF2/ITO glass/ZnO/PCE-10:A078/MoO3/ITO/MgF2/MoO3/MgF2/Mo3 | A078 | −5.58 | −4.06 | 1.52 b | 0.75 | 20.9 | 70 | 10.8 | 13.0 | 45.7 | 5.0 | − | 0.33, 0.39 | [82] |
3.1.2. Fused Cyclopentadithiophene (CPDT)- and Benzodithiohene (BDT)-Based Acceptors
3.1.3. Y6-Based Non-Fullerene Acceptors
3.1.4. Other Novel Narrow-Bandgap NFAs
Device Structure a | NFA | HOMO eV | LUMO eV | Egopt eV | Voc V | Jsc mAcm2 | FF % | PCE % (ST-OSC) | PCE % (OSC) | AVT % | LUE % | CRI | CIE 1931 (x, y) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ITO/ZnO/PTB7-Th:IHIC/ MoO3/Au/Ag | IHIC | −5.45 | −3.93 | 1.38 | 0.75 | 19.01 | 68 | 9.77 | 4.20 | 36 | 3.51 | 86 | 0.273, 0.309 | [83] |
ITO/ZnO/PTB7-Th:6TIC/MoO3/Al/Ag | 6TIC | −5.21 | −3.83 | 1.37 | 0.82 | 14.58 | 63 | 7.62 | 11.07 | 23.3 | 1.8 | − | − | [84] |
ITO/PEDOT:PSS/J61:BT-IC/PDINO/Al | BT-IC | −5.32 | −3.85 | 1.43 | 0.87 | 16.35 | 67 | − | 9.56 | − | − | − | − | [85] |
ITO/PEDOT:PSS/J71:BTIC/PDINO/Al | BT-IC | − | − | − | 0.90 | 17.75 | 66 | − | 10.46 | − | − | − | − | [85] |
ITO/ZnO/PTB7-Th: FOIC/MoO3/Au/Ag | FOIC | −5.36 | −3.92 | 1.32 | 0.74 | 20.0 | 70 | 10.3 | 12.0 | 37.4 | 3.85 | [86] | ||
ITO/ZnO/PTB7-Th: ITIC3/MoO3/Ag | ITIC3 | −5.54 | −3.90 | 1.55 | 0.76 | 16.8 | 63 | − | 8.09 | − | − | − | − | [86] |
ITO/ZnO/PTB7-Th:F6IC/MoO3/Ag | F6IC | −5.66 | −4.02 | 1.36 | 0.61 | 18.07 | 64 | − | 7.01 | − | − | − | − | [87] |
ITO/ZnO/PTB7-Th:F8IC/MoO3/Ag | F8IC | −5.43 | −4.00 | 1.27 | 0.64 | 25.12 | 68 | − | 10.9 | − | − | − | − | [87] |
ITO/ZnO/PTB7-Th:F10IC/MoO3/Ag | F10IC | −5.26 | −3.96 | 1.25 | 0.73 | 20.83 | 67 | − | 10.2 | − | − | − | − | [87] |
ITO/ZnO/PCE-10: BT-CIC/MoO3/Ag | BT-CIC | −5.49 | −4.09 | 1.33 | 0.68 | 18.0 | 68 | 7.1 | 11.2 | 43 | 3.05 | 91 | 0.29, 0.32 | [88] |
ITO/PEDOT:PSS/HFQx-T:BZIC/PDINO/Al | BZIC | −5.42 | −3.88 | 1.45 | 0.84 | 12.67 | 59 | − | 6.30 | − | − | − | − | [89] |
ITO/ZnO/PBDB-T:Y1/MoO3/Ag | Y1 | −5.45 | −3.95 | 1.44 | 0.87 | 21.69 | 71 | − | 13.3 | − | − | − | − | [90] |
ITO/ZnO/PBDB-T:Y2/MoO3/Ag | Y2 | −5.43 | −4.04 | 1.40 | 0.81 | 22.89 | 71 | − | 13.2 | − | − | − | − | [90] |
ITO/SnO2/PBDB-T:Y14/MoO3/Ag | Y14 | −5.56 | −4.01 | 1.30 | 0.79 | 22.48 | 71 | 12.67 | 14.67 | 23.69 | 3.00 | − | − | [91] |
ITO/PEDOT:PSS/PM6:Y6/PDINO/Al | Y6 | −5.65 | −4.10 | 1.33 | 0.83 | 25.3 | 75 | − | 15.7 | − | − | − | − | [45] |
ITO/ZnO/PM6:Y6/PEDOT:PSS | Y6 | −5.7 | −3.9 | 1.33 | 0.75 | 15.8 | 63 | 7.46 | 36.4 | 2.72 | − | 0.28, 0.31 | [92] | |
ITO/PEDOT:PSS/PM6:Y6/PDIN/Au/Ag | Y6 | − | − | − | 0.85 | 20.35 | 71 | 12.37 | 15.83 | 18.6 | 2.30 | − | 0.255, 251 | [93] |
ITO/PEDOT:PSS/PTB7-Th:H3/ZnO/PEI/Ag/TeO2 | H3 | −5.40 | −3.90 | 1.5 b | 0.2 | 17.30 | 68 | 8.38 | 12.35 | 50.09 | 4.06 | 77 | 0.291, 0.339 | [94] |
ITO/PEDOT:PSS/PTB7-Th:ATT-9/PDINN/Ag | ATT-9 | −5.45 | −3.90 | 1.15 | 0.66 | 20.7 | 69 | 9.37 | 13.35 | 35 | 3.33 | − | − | [95] |
ITO/ZnO/PBDB-TF:BTP-4F/MoO3/Al | BTP-4F | −5.65 c | −4.02 c | 1.63 c | 0.83 | 24.9 | 75 | − | 15.3 | − | − | − | − | [66] |
ITO/ZnO/PBDB-TF:BTP-4F/MoO3/Al | BTP-4Cl | −5.68 c | −4.12 c | 1.56 c | 0.86 | 25.4 | 75 | − | 16.1 | − | − | − | − | [66] |
ITO/ZnO/PTQ11:TPT10/MoO3/Ag | TPT10 | −5.52 | −3.99 | 1.36 | 0.88 | 24.79 | 74 | − | 16.32 | − | − | − | − | [78] |
ITO/ZnO/PTB7-Th:COi8DFIC/MoO3/Ag | COi8DFIC | −5.50 | −3.88 | 1.26 | 0.68 | 26.12 | 68 | − | 12.16 | − | − | − | − | [97] |
ITO/ZnO/PTB7-Th:PTTtID-Cl/MoO3/Ag | PTTtID-Cl | −5.53 | −4.08 | 1.45 b | 0.73 | 17.7 | 60 | 7.7 | 8.9 | 16.7 | 1.29 | − | 0.325, 0.306 | [100] |
ITO/ZnO/PTB7-Th:COTIC-4F/MoO3/Ag | COTIC-4F | −5.26 | −4.16 | 1.10 | 0.56 | 20.3 | 56 | − | 7.4 | − | − | − | − | [101] |
ITO/ZnO/PTB7-Th:SiCOTIC-4F/MoO3/Ag | SiOTIC-4F | −5.28 | −4.11 | 1.17 | 0.65 | 21.6 | 61 | − | 9.0 | 24.2 | 2.1 | − | − | [101] |
ITO/PEDOT:PSS/PTB7-Th/DTG-IW/ZnO/Ag/Sb2O3/Ag | DTG-IW | −5.63 | −4.07 | 1.32 | 0.71 | 14.6 | 60 | 6.19 | 9.16 | 50.4 | 3.11 | − | − | [102] |
ITO/PEDOT:PSS/PTB7-Th:DTG-OW/ZnO/Al | DTG-OW | −5.67 | −4.01 | 1.29 | 0.69 | 16.2 | 66 | − | 7.45 | − | − | − | − | [102] |
3.1.5. Narrow-Bandgap Polymers
3.1.6. Multicomponent Strategy
Device Structure a | Polymer/NFA | HOMO eV | LUMO eV | Egopt eV | Voc V | Jsc mAcm2 | FF % | PCE % (ST-OSC) | PCE % (OSC) | AVT % | LUE % | CRI | CIE 1931 (x, y) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ITO/ZnO/PL1:Y6:PC61BM/MoO3/Ag | PL1 | −5.45 | −4.01 | 1.44 | 0.66 | 20.41 | 56 | − | 7.54 | − | − | − | − | [104] |
ITO/ZnO/PL2:Y6:PC61BM/MoO3/Au/MoO3 | PL2 | −5.49 | −3.98 | 1.51 | 0.69 | 24.07 | 60 | 9.91 | 11.62 | 40.4 | 4.0 | − | [104] | |
ITO/ZnO/IT-4F:PCE10-2F/MoO3/Ag | PCE10-2F | −5.47 | −3.90 | 1.57 | 0.79 | 11.12 | 43 | − | 3.71 | − | − | − | − | [105] |
ITO/ZnO/IT-4F:PCE10-2F/MoO3/Ag | PCE10-SF | −5.53 | −3.76 | 1.70 | 0.68 | 8.48 | 42 | − | 2.40 | − | − | − | − | [105] |
ITO/ZnO/IT-4F:PCE10-2F/MoO3/Ag | PCE10-2Cl | −5.50 | −3.93 | 1.57 | 0.82 | 16.96 | 68 | 8.25 | 10.72 | 33 | 2.72 | 69 | 0.235, 0.287 | [105] |
ITO/PEDOT:PSS/PCE10-BDT2F:Y6/PDINO/Ag | PCE10-BDT2F | −5.42 | −3.83 | 1.59 b | 0.75 | 20.73 | 70 | 10.85 | 13.80 | 41.08 | 4.46 | 79 | − | [106] |
ITO/PEDOT:PSS/PCE10-BDT2Cl:Y6/PDINO/Ag | PCE10-BDT2Cl | −5.41 | −3.81 | 1.60 b | 0.74 | 28.85 | 66 | − | 12.09 | − | − | − | − | [106] |
ITO/ PEDOT:PSS/PCE10-2F/Y6/PDINO/Ag/MoO3 | PCE10-2F | −5.47 | −3.87 | 1.57 | 0.78 | 17.79 | 71 | 10.01 | 14.53 | 50.05 | 5.01 | − | 0.265, 0.290 | [107] |
ITO/ZnO/PTB7-Th:PTTtID-Cl:IT4F/MoO3/Ag | PTTtID-Cl:IT-4F | − | − | − | 0.85 | 17.5 | 69 | 9.1 | 12.0 | − | − | − | 0.276, 0.213 | [100] |
ITO/PEDOT:PSS/PBDB-TF:L8-BO/Bis-FIMG/Ag | L8-BO | −5.68 | −3.90 | 1.78 b | 0.86 | 22.99 | 79 | 15.61 | 18.25 | 8.98 | 1.4 | − | − | [111] |
ITO/PEDOT:PSS/PBDB-TF:L8-BO:BTP-eC9/Bis-FIMG/Ag | BTP-eC9:L8-BO c | − | − | − | 0.85 | 19.00 | 79 | 12.95 | 19.35 | 38.67 | 5.0 | − | − | [111] |
ITO/PEDOT:PSS/PM6:SN/PDINN/Ag | SN | −5.51 | −3.82 | 1.40 | 0.82 | 21.78 | 68 | 12.2 | 14.3 | 22 | 2.68 | − | − | [112] |
ITO/PEDOT:PSS/PM6:Y6:SN/PDINN/Ag | Y6:SN | − | − | − | 0.82 | 22.98 | 74 | 14.0 | 17.5 | 20.2 | 2.83 | 95 | 0.283, 0.283 | [112] |
ITO/PEDOT:PSS/PM6: BTP-eC9/PDINN/Ag | BTP-eC9 | −5.67 | −4.05 | 1.62 b | 0.75 | 18.73 | 76 | 10.5 | 17.81 | 29.27 | 3.07 | 80 | 0.280, 0.239 | [113] |
(LiF/TeO2)4/ITO/PEDOT:PSS/PM6:BTP-eC9:L8-BO/PDINN/Ag/(LiF/TeO2)8/LiF | BTP-eC9:L8BO | − | − | − | 0.95 | 17.97 | 75 | 11.44 | 18.24 | 57.5 | 5.35 | 85 | 0.305, 0.336 | [113] |
ITO/PEDOT:PSS/PCE10-2F:PM6:Y6/PDINO-3/Ag/MnO3 | PCE10-2F:PM6 | − | − | − | 0.78 | 21.99 | 71 | 12.25 | 16.77 | 36.57 | 4.48 | − | 0.283, 0.348 | [114] |
4. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Riede, M.; Spoltore, D.; Leo, K. Organic Solar Cells—The Path to Commercial Success. Adv. Energy Mater. 2021, 11, 2002653. [Google Scholar] [CrossRef]
- Almora, O.; Baran, D.; Bazan, G.C.; Berger, C.; Cabrera, C.I.; Catchpole, K.R.; Erten-Ela, S.; Guo, F.; Hauch, J.; Ho-Baillie, A.W.Y. Device Performance of Emerging Photovoltaic Materials (version 1). Adv. Energy Mater. 2021, 11, 2002774. [Google Scholar] [CrossRef]
- Mazzio, K.A.; Luscombe, C.K. The Future of Organic Photovoltaics. Chem. Soc. Rev. 2015, 44, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Ye, L.; Zhang, H.; Li, S.; Zhang, S.; Hou, J. Molecular Design of Benzodithiophene-based Organic Photovoltaic Materials. Chem. Rev. 2016, 116, 7397–7457. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Chen, Y.; Sun, M.; Zheng, Y. Organic Solar Cells: Physical Principle and Recent Advances. Chem.—Asian J. 2023, 18, e202300006. [Google Scholar] [CrossRef]
- Schwarz, K.N.; Geraghty, P.B.; Jones, D.J.; Smith, T.A.; Ghiggino, K.P. Suppressing Subnanosecond Bimolecular Charge Recombination in a High-Performance Organic Photovoltaic Material. J. Phys. Chem. C 2016, 120, 24002–24010. [Google Scholar] [CrossRef]
- Søndergaard, R.R.; Hösel, M.; Krebs, F.C. Roll-to-roll Fabrication of Large Area Functional Organic Materials. J. Polym. Sci. Part B Polym. Phys. 2013, 51, 16–34. [Google Scholar] [CrossRef]
- Liu, K.; Jiang, Y.; Ran, G.; Liu, F.; Zhang, W.; Zhu, X. 19.7% efficiency binary organic solar cells achieved by selective core fluorination of nonfullerene electron acceptors. Joule 2024, 8, 835–851. [Google Scholar] [CrossRef]
- Fu, J.; Fong, P.W.; Liu, H.; Huang, C.; Lu, X.; Lu, S.; Abdelsamie, M.; Kodalle, T.; Sutter-Fella, C.M.; Yang, Y.; et al. 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nat. Commun. 2023, 14, 1760. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Cui, Y.; Zhang, J.; Xian, K.; Chen, Z.; Zhou, K.; Zhang, T.; Wang, W.; Yao, H.; Zhang, S. High-efficiency and Mechanically Robust All-polymer Organic Photovoltaic Cells Enabled by Optimized Fibril Network Morphology. Adv. Mater. 2023, 35, 2208926. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Y.; Bi, P.; Chen, Z.; Qiao, J.; Li, J.; Wang, W.; Zheng, Z.; Zhang, S.; Hao, X. Binary Organic Solar Cells with 19.2% Efficiency Enabled by Solid Additive. Adv. Mater. 2023, 35, 2301583. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Jeong, S.Y.; Tian, J.; Zhang, Y.; Naphade, D.R.; Alsufyani, M.; Zhang, W.; Griggs, S.; Hu, H.; Barlow, S. A 19% Efficient and Stable Organic Photovoltaic Device Enabled by a Guest Nonfullerene Acceptor with Fibril-like Morphology. Energy Environ. Sci. 2023, 16, 1062–1070. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, Z.; Lu, G.; Yu, N.; Li, C.; Gao, J.; Gu, X.; Hao, X.; Lu, G.; Tang, Z. Binary Organic Solar Cells Breaking 19% via Manipulating the Vertical Component Distribution. Adv. Mater. 2022, 34, 2204718. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, Z.; Sun, H.; Li, J.; Chen, Y.; Wang, J.; Zhan, C. Reducing the voltage loss of Y-series acceptor based organic solar cells via ternary/quaternary strategies. Chin. Chem. Lett. 2024, 35, 108802. [Google Scholar] [CrossRef]
- Armin, A.; Li, W.; Sandberg, O.J.; Xiao, Z.; Ding, L.; Nelson, J.; Neher, D.; Vandewal, K.; Shoaee, S.; Wang, T. A History and Perspective of Non-fullerene Electron Acceptors for Organic Solar Cells. Adv. Energy Mater. 2021, 11, 2003570. [Google Scholar] [CrossRef]
- Mikhnenko, O.V.; Blom, P.W.M.; Nguyen, T.Q. Exciton diffusion in organic semiconductors. Energy Environ. Sci. 2015, 8, 1867–1888. [Google Scholar] [CrossRef]
- Li, Y.; Huang, X.; Sheriff, H.K.; Forrest, S.R. Semitransparent organic photovoltaics for building-integrated photovoltaic applications. Nat. Rev. Mater. 2023, 8, 186–201. [Google Scholar] [CrossRef]
- Duan, L.; Hoex, B.; Uddin, A. Progress in Semitransparent Organic Solar Cells. Sol. RRL 2021, 5, 2100041. [Google Scholar] [CrossRef]
- Lee, K.; Um, H.; Choi, D.; Park, J.; Kim, N.; Kim, H.; Seo, K. The Development of Transparent Photovoltaics. Cell Rep. Phys. Sci. 2020, 1, 100143. [Google Scholar] [CrossRef]
- Tai, Q.; Yan, F. Emerging Semitransparent Solar Cells: Materials and Device Design. Adv. Mater. 2017, 29, 1700192. [Google Scholar] [CrossRef] [PubMed]
- Bisquert, J. The two sides of solar energy. Nat. Photonics 2008, 2, 648–649. [Google Scholar] [CrossRef]
- Brus, V.V.; Lee, J.; Luginbuhl, B.R.; Ko, S.; Bazan, G.C.; Nguyen, T. Solution-processed Semitransparent Organic Photovoltaics: From Molecular Design to Device Performance. Adv. Mater. 2019, 31, 1900904. [Google Scholar] [CrossRef] [PubMed]
- Almora, O.; Baran, D.; Bazan, G.C.; Cabrera, C.I.; Erten-Ela, S.; Forberich, K.; Guo, F.; Hauch, J.; Ho-Baillie, A.W.Y.; Jacobsson, T.J. Device Performance of Emerging Photovoltaic Materials (version 3). Adv. Energy Mater. 2023, 13, 2203313. [Google Scholar] [CrossRef]
- Shin, D.; Choi, S.-H. Recent Studies of Semitransparent Solar Cells. Coatings 2018, 8, 329. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, J.; Ma, X.; Gao, J.; Xu, C.; Yang, K.; Wang, Z.; Zhang, J.; Zhang, F. A critical review on semitransparent organic solar cells. Nano Energy 2020, 78, 105376. [Google Scholar] [CrossRef]
- Khandelwal, K.; Biswas, S.; Mishra, A.; Sharma, G.D. Semitransparent Organic Solar Cells: From Molecular Design to Structure–performance Relationships. J. Mater. Chem. C 2022, 10, 13–43. [Google Scholar] [CrossRef]
- Chen, K.S.; Salinas, J.F.; Yip, H.L.; Huo, L.; Hou, J.; Jen, A.K.Y. Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications. Energy Environ. Sci. 2012, 5, 9551–9557. [Google Scholar] [CrossRef]
- Kumar, P.; You, S.; Vomiero, A. Recent Progress in Materials and Device Design for Semitransparent Photovoltaic Technologies. Adv. Energy Mater. 2023, 13, 2301555. [Google Scholar] [CrossRef]
- Colsmann, A.; Puetz, A.; Bauer, A.; Hanisch, J.; Ahlswede, E.; Lemmer, U. Efficient Semi-transparent Organic Solar Cells with Good Transparency Color Perception and Rendering Properties. Adv. Energy Mater. 2011, 1, 599–603. [Google Scholar] [CrossRef]
- Lynn, N.; Mohanty, L.; Wittkopf, S. Color rendering properties of semi-transparent thin-film PV modules. Build. Environ. 2012, 54, 148–158. [Google Scholar] [CrossRef]
- Traverse, C.J.; Pandey, R.; Barr, M.C.; Lunt, R.R. Emergence of highly transparent photovoltaics for distributed applications. Nat. Energy 2017, 2, 849–860. [Google Scholar] [CrossRef]
- Yang, C.; Liu, D.; Bates, M.; Barr, M.C.; Lunt, R.R. How to Accurately Report Transparent Solar Cells. Joule 2019, 3, 1803–1809. [Google Scholar] [CrossRef]
- Xia, R.; Gu, H.; Liu, S.; Zhang, K.; Yip, H.; Cao, Y. Optical Analysis for Semitransparent Organic Solar Cells. Sol. RRL 2019, 3, 1800270. [Google Scholar] [CrossRef]
- Chen, J.; Cui, C.; Li, Y.; Zhou, L.; Ou, Q.; Li, C.; Li, Y.; Tang, J. Single-junction Polymer Solar Cells Exceeding 10% Power Conversion Efficiency. Adv. Mater. 2015, 27, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Li, Y. Fullerene Derivative Acceptors for High Performance Polymer Solar Cells. Phys. Chem. Chem. Phys. 2011, 13, 1970–1983. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, Y.; Song, P.; Su, R.; Ma, F.; Yang, Y. Non-fullerene Acceptor-based Solar Cells: From Structural Design to Interface Charge Separation and Charge Transport. Polymers 2017, 9, 692. [Google Scholar] [CrossRef]
- Forti, G.; Nitti, A.; Osw, P.; Bianchi, G.; Po, R.; Pasini, D. Recent Advances in Non-fullerene Acceptors of the IDIC/ITIC Families for Bulk-heterojunction Organic Solar Cells. Int. J. Mol. Sci. 2020, 21, 8085. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Dou, L.; Gao, J.; Chang, W.H.; Li, G.; Yang, Y. High-performance semi-transparent polymer solar cells possessing tandem structures. Energy Environ. Sci. 2013, 6, 2714–2720. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, K.; Dong, S.; Xia, R.; Huang, F.; Cao, Y. Semitransparent Organic Solar Cells Enabled by a Sequentially Deposited Bilayer Structure. ACS Appl. Mater. Interfaces 2020, 12, 18473–18481. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.; Yang, S.; Jeong, Y.; Li, M.Q.; Park, G.Y.; Kim, M.; Lee, J. Critical Role of the End-group Acceptor in Enhancing the Efficiency of Indacenodithiophene-Benzothiadiazole-Linked Nonfullerene Organic Solar Cells through Morphology Optimization. Synthetic Metals 2024, 117605. [Google Scholar] [CrossRef]
- Ruhle, S. Tabulated values of the Shockley–Queisser limit for single junction solar cells. Sol. Energy 2016, 130, 139–147. [Google Scholar] [CrossRef]
- Collins, S.D.; Ran, N.A.; Heiber, M.C.; Nguyen, T. Small Is Powerful: Recent Progress in Solution-processed Small Molecule Solar Cells. Adv. Energy Mater. 2017, 7, 1602242. [Google Scholar] [CrossRef]
- Alam, S.; Lee, J. Progress and Future Potential of All-Small-Molecule Organic Solar Cells Based on the Benzodithiophene Donor Material. Molecules 2023, 28, 3171. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, J.; Zhang, Z.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells. Adv. Mater. 2015, 27, 1170–1174. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.; Lau, T.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P.A.; et al. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3, 1140–1151. [Google Scholar] [CrossRef]
- Wang, J.; Xue, P.; Jiang, Y.; Huo, Y.; Zhan, X. The principles, design and applications of fused-ring electron acceptors. Nat. Rev. Chem. 2022, 6, 614–634. [Google Scholar] [CrossRef]
- Dai, S.; Xiao, Y.; Xue, P.; James Rech, J.; Liu, K.; Li, Z.; Lu, X.; You, W.; Zhan, X. Effect of Core Size on Performance of Fused-ring Electron Acceptors. Chem. Mater. 2018, 30, 5390–5396. [Google Scholar] [CrossRef]
- Jia, B.; Wang, J.; Wu, Y.; Zhang, M.; Jiang, Y.; Tang, Z.; Russell, T.P.; Zhan, X. Enhancing the Performance of a Fused-ring Electron Acceptor by Unidirectional Extension. J. Am. Chem. Soc. 2019, 141, 19023–19031. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Bai, H.; Wang, Z.; Cheng, P.; Zhu, S.; Wang, Y.; Ma, W.; Zhan, X. A planar electron acceptor for efficient polymer solar cells. Energy Environ. Sci. 2015, 8, 3215–3221. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, B.; Qin, F.; Wu, Y.; Meng, W.; Dai, S.; Zhou, Y.; Zhan, X. Semitransparent, non-fullerene and flexible all-plastic solar cells. Polymer 2016, 107, 108–112. [Google Scholar] [CrossRef]
- Holliday, S.; Ashraf, R.S.; Wadsworth, A.; Baran, D.; Yousaf, S.A.; Nielsen, C.B.; Tan, C.; Dimitrov, S.D.; Shang, Z.; Gasparini, N.; et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat. Commun. 2016, 7, 11585. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, Y.; Zhang, L.; Chow, P.C.; Wang, Z.; Zhang, G.; Ma, W.; Yan, H. A wide-bandgap donor polymer for highly efficient non-fullerene organic solar cells with a small voltage loss. J. Am. Chem. Soc. 2017, 139, 6298–6301. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Lee, J.H.; Lee, S.; Jeong, S.Y.; Choi, J.W.; Lee, C.L.; Kim, J.H.; Lee, K. Retarding ion exchange between conducting polymers and ionic liquids for printable top electrodes in semitransparent organic solar cells. ACS Appl. Mater. Interfaces 2019, 12, 2276–2284. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lu, H.; Li, M.; Zhang, Z.; Feng, S.; Xu, X.; Wu, Y.; Bo, Z. Enhancing the performance of non-fullerene organic solar cells using regioregular wide-bandgap polymers. Macromolecules 2018, 51, 8646–8651. [Google Scholar] [CrossRef]
- Sun, G.; Shahid, M.; Fei, Z.; Xu, S.; Eisner, F.D.; Anthopolous, T.D.; Mclachlan, M.A.; Heeney, M. Highly-efficient Semi-transparent Organic Solar Cells Utilizing Non-fullerene Acceptors with Optimized Multilayer MoO3/Ag/MoO3 Electrodes. Mater. Chem. Front. 2019, 3, 450–455. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, Z.; Zhang, C.; Vergote, T.; Fan, H.; Liu, F.; Zhu, X. A thieno [3,4-b] thiophene-based non-fullerene electron acceptor for high-performance bulk-heterojunction organic solar cells. J. Am. Chem. Soc. 2016, 138, 15523–15526. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhou, Z.; Zhang, C.; Zhang, J.; Hu, Q.; Vergote, T.; Liu, F.; Russell, T.P.; Zhu, X. Efficient Semitransparent Solar Cells with High NIR Responsiveness Enabled by a Small-bandgap Electron Acceptor. Adv. Mater. 2017, 29, 1606574. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Han, C.; Wan, X.; Chen, Y. Recent Progress in Non-fused Ring Electron Acceptors for High Performance Organic Solar Cells. Ind. Chem. Mater. 2023, 1, 60–78. [Google Scholar] [CrossRef]
- Duan, T.; Chen, Q.; Hu, D.; Lv, J.; Yu, D.; Li, G.; Lu, S. Oligothiophene-based photovoltaic materials for organic solar cells: Rise, plateau, and revival. Trends Chem. 2022, 4, 773–791. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, Z.G.; Bai, H.; Wang, J.; Yao, Y.; Li, Y.; Zhu, D.; Zhan, X. High-performance fullerene-free polymer solar cells with 6.31% efficiency. Energy Environ. Sci. 2015, 8, 610–616. [Google Scholar] [CrossRef]
- Yao, H.; Chen, Y.; Qin, Y.; Yu, R.; Cui, Y.; Yang, B.; Li, S.; Zhang, K.; Hou, J. Design and Synthesis of a Low Bandgap Small Molecule Acceptor for Efficient Polymer Solar Cells. Adv. Mater. 2016, 28, 8283–8287. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Wang, Y.; Zou, X.; Han, H.; Kim, H.K.; Yao, Z.; Wang, Z.; Li, Y.; Ng, H.M.; Zhou, W. Effects of Halogenation of Small-molecule and Polymeric Acceptors for Efficient Organic Solar Cells. Adv. Funct. Mater. 2023, 33, 2300712. [Google Scholar] [CrossRef]
- Kini, G.P.; Jeon, S.J.; Moon, D.K. Design Principles and Synergistic Effects of Chlorination on a Conjugated Backbone for Efficient Organic Photovoltaics: A Critical Review. Adv. Mater. 2020, 32, 1906175. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yan, L.; Jiao, X.; Peng, Z.; Liu, S.; Rech, J.J.; Klump, E.; Ade, H.; So, F.; You, W. Fluorinated Thiophene Units Improve Photovoltaic Device Performance of Donor–acceptor Copolymers. Chem. Mater. 2017, 29, 5990–6002. [Google Scholar] [CrossRef]
- Liu, C.; Qiu, N.; Sun, Y.; Ke, X.; Zhang, H.; Li, C.; Wan, X.; Chen, Y. All-small-molecule organic solar cells based on a fluorinated small molecule donor with high open-circuit voltage of 1.07 V. Front. Chem. 2020, 8, 534210. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Xian, K.; Xu, B.; Zhang, S.; Peng, J. Over 16% Efficiency Organic Photovoltaic Cells Enabled by a Chlorinated Acceptor with Increased Open-circuit Voltages. Nat. Commun. 2019, 10, 2515. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Meng, H.; Shen, F.; Su, D.; Huo, S.; Shan, J.; Huang, J.; Zhan, C. Semitransparent fullerene-free polymer solar cell with 44% AVT and 7% efficiency based on a new chlorinated small molecule acceptor. Dye. Pigment. 2019, 166, 196–202. [Google Scholar] [CrossRef]
- Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 2017, 139, 7148–7151. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yang, H.; Zou, Y.; Dong, Y.; Yuan, J.; Cui, C.; Li, Y. A new dialkylthio-substituted naphtho [2,3-c] thiophene-4, 9-dione based polymer donor for high-performance polymer solar cells. Energy Environ. Sci. 2019, 12, 675–683. [Google Scholar] [CrossRef]
- Li, X.; Huang, H.; Bin, H.; Peng, Z.; Zhu, C.; Xue, L.; Zhang, Z.G.; Zhang, Z.; Ade, H.; Li, Y. Synthesis and photovoltaic properties of a series of narrow bandgap organic semiconductor acceptors with their absorption edge reaching 900 nm. Chem. Mater. 2017, 29, 10130–10138. [Google Scholar] [CrossRef]
- Huang, H.; Li, X.; Zhong, L.; Qiu, B.; Yang, Y.; Zhang, Z.G.; Zhang, Z.; Li, Y. High performance as-cast semitransparent polymer solar cells. J. Mater. Chem. A 2018, 6, 4670–4677. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Shan, T.; Wei, Q.; Xu, Y.X.; Zhong, H. Non-fullerene acceptors with an optical response over 1000 nm toward efficient organic solar cells. ACS Appl. Mater. Interfaces 2021, 13, 51279–51288. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Cui, Y.; Yu, R.; Gao, B.; Zhang, H.; Hou, J. Design, Synthesis, and Photovoltaic Characterization of a Small Molecular Acceptor with an Ultra-narrow Band Gap. Angew. Chem. Int. Ed. 2017, 56, 3045–3049. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Wang, Z.; Zhang, F. Semitransparent polymer solar cells with 9.06% efficiency and 27.1% average visible transmittance obtained by employing a smart strategy. J. Mater. Chem. A 2019, 7, 7025–7032. [Google Scholar] [CrossRef]
- Cui, Y.; Yang, C.; Yao, H.; Zhu, J.; Wang, Y.; Jia, G.; Gao, F.; Hou, J. Efficient Semitransparent Organic Solar Cells with Tunable Color Enabled by an Ultralow-bandgap Nonfullerene Acceptor. Adv. Mater. 2017, 29, 1703080. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Ko, S.; Seifrid, M.; Lee, H.; Mcdowell, C.; Luginbuhl, B.R.; Karki, A.; Cho, K.; Nguyen, T.; Bazan, G.C. Design of Nonfullerene Acceptors with Near-infrared Light Absorption Capabilities. Adv. Energy Mater. 2018, 8, 1801209. [Google Scholar] [CrossRef]
- Zou, Y.; Dong, Y.; Sun, C.; Wu, Y.; Yang, H.; Cui, C.; Li, Y. High-performance polymer solar cells with minimal energy loss enabled by a main-chain-twisted nonfullerene acceptor. Chem. Mater. 2019, 31, 4222–4227. [Google Scholar] [CrossRef]
- Sun, C.; Qin, S.; Wang, R.; Chen, S.; Pan, F.; Qiu, B.; Shang, Z.; Meng, L.; Zhang, C.; Xiao, M.; et al. High efficiency polymer solar cells with efficient hole transfer at zero highest occupied molecular orbital offset between methylated polymer donor and brominated acceptor. J. Am. Chem. Soc. 2020, 142, 1465–1474. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yao, H.; Hu, B.; Zhang, G.; Arunagiri, L.; Ma, L.; Huang, J.; Zhang, J.; Zhu, Z.; Bai, F. A Nonfullerene Semitransparent Tandem Organic Solar Cell with 10.5% Power Conversion Efficiency. Adv. Energy Mater. 2018, 8, 1800529. [Google Scholar] [CrossRef]
- Jia, B.; Dai, S.; Ke, Z.; Yan, C.; Ma, W.; Zhan, X. Breaking 10% efficiency in semitransparent solar cells with fused-undecacyclic electron acceptor. Chem. Mater. 2018, 30, 239–245. [Google Scholar] [CrossRef]
- Chen, J.; Li, G.; Zhu, Q.; Guo, X.; Fan, Q.; Ma, W.; Zhang, M. Highly efficient near-infrared and semitransparent polymer solar cells based on an ultra-narrow bandgap nonfullerene acceptor. J. Mater. Chem. A 2019, 7, 3745–3751. [Google Scholar] [CrossRef]
- Li, Y.; Guo, X.; Peng, Z.; Qu, B.; Yan, H.; Ade, H.; Zhang, M.; Forrest, S.R. Color-neutral, Semitransparent Organic Photovoltaics for Power Window Applications. Proc. Natl. Acad. Sci. USA 2020, 117, 21147–21154. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yan, C.; Lau, T.; Wang, J.; Liu, K.; Fan, Y.; Lu, X.; Zhan, X. Fused Hexacyclic Nonfullerene Acceptor with Strong Near-infrared Absorption for Semitransparent Organic Solar Cells with 9.77% Efficiency. Adv. Mater. 2017, 29, 1701308. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Chen, J.; Gao, K.; Zuo, L.; Yao, Z.; Liu, F.; Tang, J.; Jen, A.K.Y. Terthieno [3,2-b] Thiophene (6T) Based Low Bandgap Fused-Ring Electron Acceptor for Highly Efficient Solar Cells with a High Short-Circuit Current Density and Low Open-Circuit Voltage Loss. Adv. Energy Mater. 2018, 8, 1702831. [Google Scholar] [CrossRef]
- Li, Y.; Zhong, L.; Gautam, B.; Bin, H.J.; Lin, J.D.; Wu, F.P.; Zhang, Z.; Jiang, Z.Q.; Zhang, Z.G.; Gundogdu, K.; et al. A near-infrared non-fullerene electron acceptor for high performance polymer solar cells. Energy Environ. Sci. 2017, 10, 1610–1620. [Google Scholar] [CrossRef]
- Li, T.; Dai, S.; Ke, Z.; Yang, L.; Wang, J.; Yan, C.; Ma, W.; Zhan, X. Fused Tris(thienothiophene)-based Electron Acceptor with Strong Near-infrared Absorption for High-performance As-cast Solar Cells. Adv. Mater. 2018, 30, 1705969. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Li, T.; Wang, W.; Xiao, Y.; Lau, T.; Li, Z.; Liu, K.; Lu, X.; Zhan, X. Enhancing the Performance of Polymer Solar Cells via Core Engineering of Nir-absorbing Electron Acceptors. Adv. Mater. 2018, 30, 1706571. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lin, J.D.; Che, X.; Qu, Y.; Liu, F.; Liao, L.S.; Forrest, S.R. High efficiency near-infrared and semitransparent non-fullerene acceptor organic photovoltaic cells. J. Am. Chem. Soc. 2017, 139, 17114–17119. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Yuan, J.; Zhang, Z.; Peng, H.; Zhang, Z.G.; Xu, S.; Liu, Y.; Li, Y.; Zou, Y. Thieno [3,2-b] pyrrolo-fused pentacyclic benzotriazole-based acceptor for efficient organic photovoltaics. ACS Appl. Mater. Interfaces 2017, 9, 31985–31992. [Google Scholar] [CrossRef]
- Yuan, J.; Huang, T.; Cheng, P.; Zou, Y.; Zhang, H.; Yang, J.L.; Chang, S.Y.; Zhang, Z.; Huang, W.; Wang, R.; et al. Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nat. Commun. 2019, 10, 570. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Zhao, C.; Yuan, J.; Hai, J.; Cai, F.; Hu, Y.; Peng, H.; Bai, Y.; Tan, Z.A.; Zou, Y. Semitransparent solar cells with over 12% efficiency based on a new low bandgap fluorinated small molecule acceptor. Mater. Chem. Front. 2019, 3, 2483–2490. [Google Scholar] [CrossRef]
- Yao, N.; Xia, Y.; Liu, Y.; Chen, S.; Jonsson, M.P.; Zhang, F. Solution-processed Highly Efficient Semitransparent Organic Solar Cells with Low Donor Contents. ACS Appl. Energy Mater. 2021, 4, 14335–14341. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, Z.; An, Q.; Zhang, F. Semitransparent polymer solar cells with 12.37% efficiency and 18.6% average visible transmittance. Sci. Bull. 2020, 65, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; He, C.; Zuo, L.; Zhao, F.; Zhan, L.; Li, X.; Xia, R.; Yip, H.; Li, C.; Liu, X. High-performance Semi-transparent Organic Photovoltaic Devices via Improving Absorbing Selectivity. Adv. Energy Mater. 2021, 11, 2003408. [Google Scholar] [CrossRef]
- Liu, W.; Sun, S.; Xu, S.; Zhang, H.; Zheng, Y.; Wei, Z.; Zhu, X. Theory-guided Material Design Enabling High-performance Multifunctional Semitransparent Organic Photovoltaics Without Optical Modulations. Adv. Mater. 2022, 34, 2200337. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Liu, F.; Geng, X.; Zhang, J.; Wang, S.; Xie, Y.; Li, Z.; Yang, H.; Yuan, Y.; Ding, L. A carbon-oxygen-bridged ladder-type building block for efficient donor and acceptor materials used in organic solar cells. Sci. Bull. 2017, 62, 1331–1336. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Jia, X.; Li, D.; Wang, S.; Geng, X.; Liu, F.; Chen, J.; Yang, S.; Russell, T.P.; Ding, L. 26 mA cm−2 Jsc from organic solar cells with a low-bandgap nonfullerene acceptor. Sci. Bull. 2017, 62, 1494–1496. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, K.; Rasmussen, S.C. A simple and efficient route to N-functionalized dithieno [3,2-b:2‘,3‘-d] pyrroles: Fused-ring building blocks for new conjugated polymeric systems. J. Org. Chem. 2003, 68, 2921–2928. [Google Scholar] [CrossRef]
- Rasmussen, S.C.; Evenson, S.J. Dithieno [3,2-b:2′,3′-d] pyrrole-based materials: Synthesis and application to organic electronics. Prog. Polym. Sci. 2013, 38, 1773–1804. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, B.; Lu, J.; Cheng, M.; Jeng, R.; Lu, Y.; Chen, C.; Wong, K. A Near-infrared Absorption Small Molecule Acceptor for High-performance Semitransparent and Colorful Binary and Ternary Organic Photovoltaics. ChemSusChem 2020, 13, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Ko, S.; Seifrid, M.; Lee, H.; Luginbuhl, B.R.; Karki, A.; Ford, M.; Rosenthal, K.; Cho, K.; Nguyen, T. Bandgap Narrowing in Non-fullerene Acceptors: Single Atom Substitution Leads to High Optoelectronic Response Beyond 1000 Nm. Adv. Energy Mater. 2018, 8, 1801212. [Google Scholar] [CrossRef]
- Cho, Y.; Lee, T.H.; Jeong, S.; Park, S.Y.; Lee, B.; Kim, J.Y.; Yang, C. Dithienogermole-based nonfullerene acceptors: Roles of the side-chains’ direction and development of green-tinted efficient semitransparent organic solar cells. ACS Appl. Energy Mater. 2020, 3, 7689–7698. [Google Scholar] [CrossRef]
- Cheng, H.; Zhao, Y.; Yang, Y. Toward High-performance Semitransparent Organic Photovoltaics with Narrow-bandgap Donors and Non-fullerene Acceptors. Adv. Energy Mater. 2022, 12, 2102908. [Google Scholar] [CrossRef]
- Yoon, J.W.; Bae, H.; Yang, J.; Ha, J.W.; Lee, C.; Lee, J.; Yoon, S.C.; Choi, H.; Ko, S.J. Semitransparent organic solar cells with light utilization efficiency of 4% using fused-cyclopentadithiophene based near-infrared polymer donor. Chem. Eng. J. 2023, 452, 139423. [Google Scholar] [CrossRef]
- Huang, X.; Oh, J.; Cheng, Y.; Huang, B.; Ding, S.; He, Q.; Wu, F.; Yang, C.; Chen, L.; Chen, Y. Narrow band-gap materials with overlapping absorption simultaneously increase the open circuit voltage and average visible transmittance of semitransparent organic solar cells. J. Mater. Chem. A 2021, 9, 5711–5719. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L.; Cheng, Y.; Oh, J.; Li, C.; Huang, B.; Zhao, L.; Deng, J.; Zhang, Y.; Liu, Z. Novel Narrow Bandgap Terpolymer Donors Enables Record Performance for Semitransparent Organic Solar Cells Based on All-narrow Bandgap Semiconductors. Adv. Funct. Mater. 2022, 32, 2108634. [Google Scholar] [CrossRef]
- Huang, X.; Cheng, Y.; Fang, Y.; Zhang, L.; Hu, X.; Jeong, S.Y.; Zhang, H.; Woo, H.Y.; Wu, F.; Chen, L. A molecular weight-regulated sequential deposition strategy enabling semitransparent organic solar cells with the light utilization efficiency of over 5%. Energy Environ. Sci. 2022, 15, 4776–4788. [Google Scholar] [CrossRef]
- Lu, L.; Kelly, M.A.; You, W.; Yu, L. Status and prospects for ternary organic photovoltaics. Nat. Photonics 2015, 9, 491–500. [Google Scholar] [CrossRef]
- An, Q.; Zhang, F.; Zhang, J.; Tang, W.; Deng, Z.; Hu, B. Versatile ternary organic solar cells: A critical review. Energy Environ. Sci. 2016, 9, 281–322. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, R.; Zhu, J.; Huang, W.; Chang, S.; Meng, L.; Sun, P.; Cheng, H.; Qin, M.; Zhu, C. Ternary System with Controlled Structure: A New Strategy Toward Efficient Organic Photovoltaics. Adv. Mater. 2018, 30, 1705243. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.; Li, Y.; Yan, K.; Fu, W.; Zuo, L.; Chen, H. Balancing the Selective Absorption and Photon-to-electron Conversion for Semitransparent Organic Photovoltaics with 5.0% Light-utilization Efficiency. Adv. Mater. 2022, 34, 2205844. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Sun, S.; Zhou, L.; Cui, Y.; Zhang, W.; Hou, J.; Liu, F.; Xu, S.; Zhu, X. Design of Near-infrared Nonfullerene Acceptor with Ultralow Nonradiative Voltage Loss for High-performance Semitransparent Ternary Organic Solar Cells. Angew. Chem. Int. Ed. 2022, 61, e202116111. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhong, Z.; Zhu, R.; Yu, J.; Li, G. Aperiodic band-pass electrode enables record-performance transparent organic photovoltaics. Joule 2022, 6, 1918–1930. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, X.; Wang, Y.; Jeong, S.Y.; Huang, B.; Deng, J.; Liu, J.; Cheng, Y.; Woo, H.Y.; Wu, F.; et al. Combination of highly photovoltaic and highly transparent materials enables record performance semitransparent organic solar cells. Chem. Eng. J. 2023, 451, 139081. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, S.; Sim, S.; Li, M.Q.; Chang, B.-J.; Lee, J. Recent Progress in Semitransparent Organic Solar Cells: Photoabsorbent Materials and Design Strategies. Micromachines 2024, 15, 493. https://doi.org/10.3390/mi15040493
Alam S, Sim S, Li MQ, Chang B-J, Lee J. Recent Progress in Semitransparent Organic Solar Cells: Photoabsorbent Materials and Design Strategies. Micromachines. 2024; 15(4):493. https://doi.org/10.3390/mi15040493
Chicago/Turabian StyleAlam, Shabaz, Suhui Sim, Meng Qiang Li, Bong-Jun Chang, and Jaewon Lee. 2024. "Recent Progress in Semitransparent Organic Solar Cells: Photoabsorbent Materials and Design Strategies" Micromachines 15, no. 4: 493. https://doi.org/10.3390/mi15040493
APA StyleAlam, S., Sim, S., Li, M. Q., Chang, B.-J., & Lee, J. (2024). Recent Progress in Semitransparent Organic Solar Cells: Photoabsorbent Materials and Design Strategies. Micromachines, 15(4), 493. https://doi.org/10.3390/mi15040493