Ultrafast Detection of Arsenic Using Carbon-Fiber Microelectrodes and Fast-Scan Cyclic Voltammetry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Fabrication of Single-Bore CFMs
2.3. Fabrication of Double-Bore CFMs
2.4. Gold Nanoparticle Electrodeposition
2.5. FSCV Electrochemical Measurements
2.6. Imaging with Scanning Electron Microscopy
3. Results and Discussion
3.1. Optimization of Electrochemical Parameters in Acidic and Basic Media
3.2. Selectivity Test
3.3. Calibration Study
3.4. Co-Detection of As3+ with Toxic Heavy Metals
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hughes, M.F.; Beck, B.D.; Chen, Y.; Lewis, A.S.; Thomas, D.J. Arsenic Exposure and Toxicology: A Historical Perspective. Toxicol. Sci. 2011, 123, 305–332. [Google Scholar] [CrossRef] [PubMed]
- Coelho, D.G. Is arsenite more toxic than arsenate in plants? Ecotoxicology 2020, 29, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Vahter, M.; Concha, G. Role of Metabolism in Arsenic Toxicity. Pharmacol. Toxicol. 2001, 89, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.A. Arsenic toxicity in plants: Cellular and molecular mechanisms of its transport and metabolism. Environ. Exp. Bot. 2016, 132, 42–52. [Google Scholar] [CrossRef]
- Hindmarsh, J.T.; McCurdy, R.F.; Savory, J. Clinical and Environmental Aspects of Arsenic Toxicity. CRC Crit. Rev. Clin. Lab. Sci. 1986, 23, 315–347. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.Y.; Costa, M. Arsenic: A Global Environmental Challenge. Annu. Rev. Pharmacol. Toxicol. 2021, 61, 47–63. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.F. Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 2002, 133, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kaur, T.; Singh, A.; Goel, R. Mechanisms pertaining to arsenic toxicity. Toxicol. Int. 2011, 18, 87. [Google Scholar] [CrossRef]
- Shaikh, A.U.; Tallman, D.E. Determination of sub-microgram per liter quantities of arsenic in water by arsine generation followed by graphite furnace atomic absorption spectrometry. Anal. Chem. 1977, 49, 1093–1096. [Google Scholar] [CrossRef] [PubMed]
- Herath, I.; Kumarathilaka, P.; Bundschuh, J.; Marchuk, A.; Rinklebe, J. A fast analytical protocol for simultaneous speciation of arsenic by Ultra-High Performance Liquid Chromatography (UHPLC) hyphenated to Inductively Coupled Plasma Mass Spectrometry (ICP-MS) as a modern advancement in liquid chromatography approaches. Talanta 2020, 208, 120457. [Google Scholar] [CrossRef]
- Lace, A.; Ryan, D.; Bowkett, M.; Cleary, J. Arsenic Monitoring in Water by Colorimetry Using an Optimized Leucomalachite Green Method. Molecules 2019, 24, 339. [Google Scholar] [CrossRef] [PubMed]
- Langner, P.; Mikutta, C.; Suess, E.; Marcus, M.A.; Kretzschmar, R. Spatial Distribution and Speciation of Arsenic in Peat Studied with Microfocused X-ray Fluorescence Spectrometry and X-ray Absorption Spectroscopy. Environ. Sci. Technol. 2013, 47, 9706–9714. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Gangopadhyay, D.; Pelc, R.; Hadravová, R.; Šebestík, J.; Bouř, P. Aggregation-aided SERS: Selective detection of arsenic by surface-enhanced Raman spectroscopy facilitated by colloid cross-linking. Talanta 2023, 253, 123940. [Google Scholar] [CrossRef] [PubMed]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef] [PubMed]
- Templeton, D. Speciation in Metal Toxicity and Metal-Based Therapeutics. Toxics 2015, 3, 170–186. [Google Scholar] [CrossRef] [PubMed]
- Stojanovic, R.S.; Bond, A.M.; Butler, E.C.V. Liquid chromatography-electrochemical detection of inorganic arsenic using a wall jet cell with conventional and microsized platinum disk electrodes. Anal. Chem. 1990, 62, 2692–2697. [Google Scholar] [CrossRef]
- Mondal, P.S. Electrochemical detection of arsenic in drinking water using low-cost electrode. Mater. Today Proc. 2022, 66, 3199–3204. [Google Scholar] [CrossRef]
- Simm, A.O.; Banks, C.E.; Compton, R.G. The Electrochemical Detection of Arsenic(III) at a Silver Electrode. Electroanalysis 2005, 17, 1727–1733. [Google Scholar] [CrossRef]
- Idris, A.O.; Mafa, J.P.; Mabuba, N.; Arotiba, O.A. Nanogold modified glassy carbon electrode for the electrochemical detection of arsenic in water. Russ. J. Electrochem. 2017, 53, 170–177. [Google Scholar] [CrossRef]
- Xiao, L.; Wildgoose, G.G.; Compton, R.G. Sensitive electrochemical detection of arsenic (III) using gold nanoparticle modified carbon nanotubes via anodic stripping voltammetry. Anal. Chim. Acta 2008, 620, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Vinoth, V. Goethite (α-FeOOH) nanoparticles wrapped on reduced graphene oxide nanosheet for sensitive electrochemical detection of arsenic(III). Ceram. Int. 2024, 509, 5267–5275. [Google Scholar] [CrossRef]
- Brusciotti, F.; Duby, P. Cyclic voltammetry study of arsenic in acidic solutions. Electrochim. Acta 2007, 52, 6644–6649. [Google Scholar] [CrossRef]
- Pathirathna, P.; Yang, Y.; Forzley, K.; McElmurry, S.P.; Hashemi, P. Fast-Scan Deposition-Stripping Voltammetry at Carbon-Fiber Microelectrodes: Real-Time, Subsecond, Mercury Free Measurements of Copper. Anal. Chem. 2012, 84, 6298–6302. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Pathirathna, P.; Siriwardhane, T.; McElmurry, S.P.; Hashemi, P. Real-Time Subsecond Voltammetric Analysis of Pb in Aqueous Environmental Samples. Anal. Chem. 2013, 85, 7535–7541. [Google Scholar] [CrossRef] [PubMed]
- Manring, N.; Strini, M.; Smeltz, J.L.; Pathirathna, P. Simultaneous detection of neurotransmitters and Cu2+ using double-bore carbon fiber microelectrodes via fast-scan cyclic voltammetry. RSC Adv. 2023, 13, 33844–33851. [Google Scholar] [CrossRef] [PubMed]
- Mohanaraj, S.; Wonnenberg, P.; Cohen, B.; Zhao, H.; Hartings, M.R.; Zou, S. Gold Nanoparticle Modified Carbon Fiber Microelectrodes for Enhanced Neurochemical Detection. J. Vis. Exp. 2019, 147, e59552. [Google Scholar] [CrossRef] [PubMed]
- Manring, N.; Ahmed, M.M.N.; Smeltz, J.L.; Pathirathna, P. Electrodeposition of dopamine onto carbon fiber microelectrodes to enhance the detection of Cu2+ via fast-scan cyclic voltammetry. Anal. Bioanal. Chem. 2023, 415, 4289–4296. [Google Scholar] [CrossRef] [PubMed]
- Venton, B.J.; Cao, Q. Fundamentals of fast-scan cyclic voltammetry for dopamine detection. Analyst 2020, 145, 1158–1168. [Google Scholar] [CrossRef] [PubMed]
- Heavy Metal Poisoning–Lead, Mercury, Arsenic and Cadmium. Available online: https://rarediseases.org/rare-diseases/heavy-metal-poisoning/ (accessed on 27 May 2024).
- Sedki, M.; Zhao, G.; Ma, S.; Jassby, D.; Mulchandani, A. Linker-Free Magnetite-Decorated Gold Nanoparticles (Fe3O4-Au): Synthesis, Characterization, and Application for Electrochemical Detection of Arsenic (III). Sensors 2021, 21, 883. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Wu, J.; Ju, H. Label-free signal-on aptasensor for sensitive electrochemical detection of arsenite. Biosens. Bioelectron. 2016, 79, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Chen, X.; Jiang, T.-J.; Guo, Z.; Liu, J.-H.; Huang, X.-J. Electrochemical Detection of Trace Arsenic(III) by Nanocomposite of Nanorod-Like α-MnO2 Decorated with ∼5 nm Au Nanoparticles: Considering the Change of Arsenic Speciation. Anal. Chem. 2016, 88, 9720–9728. [Google Scholar] [CrossRef] [PubMed]
- Ivandini, T.A.; Sato, R.; Makide, Y.; Fujishima, A.; Einaga, Y. Electrochemical Detection of Arsenic(III) Using Iridium-Implanted Boron-Doped Diamond Electrodes. Anal. Chem. 2006, 78, 6291–6298. [Google Scholar] [CrossRef] [PubMed]
- Salimi, A.; Mamkhezri, H.; Hallaj, R.; Soltanian, S. Electrochemical detection of trace amount of arsenic(III) at glassy carbon electrode modified with cobalt oxide nanoparticles. Sens. Actuators B Chem. 2008, 129, 246–254. [Google Scholar] [CrossRef]
- Baron, R.; Šljukić, B.; Salter, C.; Crossley, A.; Compton, R.G. Electrochemical detection of arsenic on a gold nanoparticle array. Russ. J. Phys. Chem. A 2007, 81, 1443–1447. [Google Scholar] [CrossRef]
- Agustiany, T.; Khalil, M.; Einaga, Y.; Jiwanti, P.K.; Ivandini, T.A. Stable iridium-modified boron-doped diamond electrode for the application in electrochemical detection of arsenic (III). Mater. Chem. Phys. 2020, 244, 122723. [Google Scholar] [CrossRef]
Electrochemical Method | Sensor | LOD (ppb) | Sensitivity | Matrix/Buffer | Reference |
---|---|---|---|---|---|
Square-Wave Anodic Stripping Voltammetry | Gold nanoparticle decorated nanorod | 0.019 | A ppb−1 cm−2 | 0.1 M Na2CO3-NaHCO3 (pH 9) | [30,32] |
Square-Wave Anodic Stripping Voltammetry | Magnetite decorated gold nanoparticles modified glassy carbon electrode | 0.22 | 0.122 mA ppb−1 | 0.2 M Acetate Buffer (pH 5) | [30] |
Anodic Stripping Voltammetry | Nanogold modified glassy carbon electrode | 0.28 | Not reported | 0.1 M H2SO4 | [19] |
Cyclic Voltammetry | Iridium-implanted boron-doped diamond electrodes | 1.5 | M−1 cm−2 | 0.1 M Phosphate Buffer Solution (pH 4) | [33] |
Cyclic Voltammetry | Glassy carbon electrode modified with cobalt oxide nanoparticles | 8.24 | M−1 | 0.1 M Phosphate Buffer Solution (pH 7) | [34] |
Differential Pulse Voltammetry | Goethite nanoparticles wrapped on reduced graphene oxide nanosheet | 22.84 | gL−1 | 0.1 M Phosphate Buffer Solution (pH 5) | [21] |
Square-Wave Voltammetry | Glassy carbon electrode modified with gold nanoparticles on multiwalled carbon nanotubes | 32.63 | M−1 | 0.1 M HCl | [20] |
Fast-Scan Cyclic Voltammetry | Carbon fiber microelectrodes | 37.46 | 2.292 nA μM−1 | Tris Buffer (pH 6.5) | |
Anodic Stripping Voltammetry | Silver electrode | 47.2 | 2.6 A M−1 | 0.1 M HNO3 | [18] |
Anodic Stripping Voltammetry | Gold nanoparticle array | 59.93 | 0.91 C M−1 | 1 M H2SO4 | [35] |
Cyclic Voltammetry | Iridium-modified boron-doped diamond electrode | 347.63 | M−1 cm−2 | 0.1 M Phosphate Buffer Solution (pH 3) | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manring, N.; Strini, M.; Koifman, G.; Xavier, J.; Smeltz, J.L.; Pathirathna, P. Ultrafast Detection of Arsenic Using Carbon-Fiber Microelectrodes and Fast-Scan Cyclic Voltammetry. Micromachines 2024, 15, 733. https://doi.org/10.3390/mi15060733
Manring N, Strini M, Koifman G, Xavier J, Smeltz JL, Pathirathna P. Ultrafast Detection of Arsenic Using Carbon-Fiber Microelectrodes and Fast-Scan Cyclic Voltammetry. Micromachines. 2024; 15(6):733. https://doi.org/10.3390/mi15060733
Chicago/Turabian StyleManring, Noel, Miriam Strini, Gene Koifman, Jonathan Xavier, Jessica L. Smeltz, and Pavithra Pathirathna. 2024. "Ultrafast Detection of Arsenic Using Carbon-Fiber Microelectrodes and Fast-Scan Cyclic Voltammetry" Micromachines 15, no. 6: 733. https://doi.org/10.3390/mi15060733
APA StyleManring, N., Strini, M., Koifman, G., Xavier, J., Smeltz, J. L., & Pathirathna, P. (2024). Ultrafast Detection of Arsenic Using Carbon-Fiber Microelectrodes and Fast-Scan Cyclic Voltammetry. Micromachines, 15(6), 733. https://doi.org/10.3390/mi15060733