Design of a Novel Microlens Array and Imaging System for Light Fields
Abstract
:1. Introduction
2. Principle of the New Light Field Imaging System
2.1. System Scenario
2.2. Design of Imaging System Structure
2.3. Design Method for a Novel Four-Focal-Length Square Microlens Array
2.3.1. Analysis of Microlens Array Arrangement
2.3.2. Theory of Multifocal Microlens Arrays to Extend the Depth of Field
2.3.3. Design and Optimization of Sub-Microlens
3. Simulation, Analysis, and Discussion
3.1. Design and Analysis of Sub-Microlens
3.2. Design and Analysis of a New Light Field Imaging System
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Park, M.K.; Park, C.S.; Hwang, Y.S.; Kim, E.S.; Choi, D.Y.; Lee, S.S. Light-Field Imaging: Virtual-Moving Metalens Array Enabling Light-Field Imaging with Enhanced Resolution (Advanced Optical Materials 21/2020). Adv. Opt. Mater. 2020, 8, 2070085. [Google Scholar] [CrossRef]
- Lien, M.-B.; Liu, C.-H.; Chun, I.Y.; Ravishankar, S.; Nien, H.; Zhou, M.; Fessler, J.A.; Zhong, Z.; Norris, T.B. Ranging and light field imaging with transparent photodetectors. Nat. Photonics 2020, 14, 143–148. [Google Scholar] [CrossRef]
- Yu, T.; Rodriguez, F.; Schedin, F.; Kravets, V.G.; Zenin, V.A.; Bozhevolnyi, S.I.; Novoselov, K.S.; Grigorenko, A.N. Nanoscale light field imaging with graphene. Commun. Mater. 2022, 3, 40. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, G.; Yu, M.; Xu, H.; Ho, Y.-S. Learning to simultaneously enhance field of view and dynamic range for light field imaging. Inf. Fusion 2023, 91, 215–229. [Google Scholar] [CrossRef]
- Chen, L.; Xu, C.; Li, J.; Zhang, B. A 3D measurement method of bubbles based on edge gradient segmentation of light field images. Chem. Eng. J. 2023, 452, 139590. [Google Scholar] [CrossRef]
- Gershun, A. The light field. J. Math. Phys. 1939, 18, 51–151. [Google Scholar] [CrossRef]
- Yang, N.; Chang, K.; Tang, J.; Xu, L.; He, Y.; Huang, R.; Yu, J. Detection method of rice blast based on 4D light field refocusing depth information fusion. Comput. Electron. Agric. 2023, 205, 107614. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, L.; Zeng, L.; Yan, T.; Zhan, Y. Joint upsampling for refocusing light fields derived with hybrid lenses. IEEE Trans. Instrum. Meas. 2023, 72, 1–12. [Google Scholar] [CrossRef]
- Feng, X.; Ma, Y.; Gao, L. Compact light field photography towards versatile three-dimensional vision. Nat. Commun. 2022, 13, 3333. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, P.; Xu, K.; Zhang, P.; Lau, R.W. Weakly-supervised salient object detection on light fields. IEEE Trans. Image Process. 2022, 31, 6295–6305. [Google Scholar] [CrossRef]
- Ko, K.; Koh, Y.J.; Chang, S.; Kim, C.-S. Light field super-resolution via adaptive feature remixing. IEEE Transactions on Image Process. 2021, 30, 4114–4128. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.K.; Liu, X.; Wu, Y.; Zhang, J.; Yuan, J.; Zhang, Z.; Tsai, D.P. A meta-device for intelligent depth perception. Adv. Mater. 2023, 35, 2107465. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Jang, K.-W.; Bae, S.-I.; Jeong, K.-H. Multi-functional imaging inspired by insect stereopsis. Commun. Eng. 2022, 1, 39. [Google Scholar] [CrossRef]
- Vogt, N. Volumetric imaging with confocal light field microscopy. Nat. Methods 2020, 17, 956. [Google Scholar] [CrossRef]
- Fu, K.; Jiang, Y.; Ji, G.-P.; Zhou, T.; Zhao, Q.; Fan, D.-P. Light field salient object detection: A review and benchmark. Comput. Vis. Media 2022, 8, 509–534. [Google Scholar] [CrossRef]
- Zhang, M.; Jin, H.; Xiao, Z.; Guillemot, C. A light field FDL-HCGH feature in scale-disparity space. IEEE Trans. Image Process. 2022, 31, 6164–6174. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, S.; Liu, P.; Zhang, Y.; Yan, Q.; Guo, T.; Zhou, X.; Wu, C. Improved depth of field of the composite micro-lens arrays by electrically tunable focal lengths in the light field imaging system. Opt. Laser Technol. 2022, 148, 107748. [Google Scholar] [CrossRef]
- Li, C.; Li, X.; He, C.; Geng, G.; Li, J.; Jing, X.; Wang, Y.; Huang, L. Metasurface-Based Structured Light Sensing without Triangulation. Adv. Opt. Mater. 2024, 12, 2302126. [Google Scholar] [CrossRef]
- Liu, F.; Hou, G. Depth estimation from a hierarchical baseline stereo with a developed light field camera. Appl. Sci. 2024, 14, 550. [Google Scholar] [CrossRef]
- Xing, S.; Sang, X.; Cao, L.; Guan, Y.; Li, Y. Medical volume data real-time optical reconstruction on light field display with a directional diffuser. Optik 2023, 313, 171166. [Google Scholar] [CrossRef]
- Li, Q.; van de Groep, J.; White, A.K.; Song, J.-H.; Longwell, S.A.; Fordyce, P.M.; Quake, S.R.; Kik, P.G.; Brongersma, M.L. Metasurface optofluidics for dynamic control of light fields. Nat. Nanotechnol. 2022, 17, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Shi, F.; Cheng, X.; Chen, S. Masked Generative Light Field Prompting for Pixel-Level Structure Segmentations. Research 2024, 7, 0328. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.; Yan, S.; Wang, L.; Chang, Y.; Liu, H. High-Quality Light Field Microscope Imaging Based on Microlens Arrays. J. Microelectromechanical Syst. 2024, 33, 296–303. [Google Scholar] [CrossRef]
- Yi, L.; Hou, B.; Zhao, H.; Liu, X. X-ray-to-visible light-field detection through pixelated colour conversion. Nature 2023, 618, 281–286. [Google Scholar] [CrossRef]
- Hu, X.; Li, Z.; Miao, L.; Fang, F.; Jiang, Z.; Zhang, X. Measurement Technologies of Light Field Camera: An Overview. Sensors 2023, 23, 6812. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Yu, C.; Zhou, H.; Wang, R.; Zhao, Z.; Ji, Y.; New, T.; Qi, F. Spatial resolution enhancement with line-scan light-field imaging. Opt. Lett. 2023, 48, 5316–5319. [Google Scholar] [CrossRef]
- Cha, Y.-G.; Na, J.; Kim, H.-K.; Kwon, J.-M.; Huh, S.-H.; Jo, S.-U.; Kim, C.-H.; Kim, M.H.; Jeong, K.-H. Microlens array camera with variable apertures for single-shot high dynamic range (HDR) imaging. Opt. Express 2023, 31, 29589–29595. [Google Scholar] [CrossRef]
- Kim, D.-M.; Kang, H.-S.; Hong, J.-E.; Suh, J.-W. Light field angular super-resolution using convolutional neural network with residual network. In Proceedings of the 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN), Zagreb, Croatia, 2–5 July 2019; pp. 595–597. [Google Scholar] [CrossRef]
- Li, T.-J.; Li, S.; Yuan, Y.; Liu, Y.-D.; Xu, C.-L.; Shuai, Y.; Tan, H.-P. Multi-focused microlens array optimization and light field imaging study based on Monte Carlo method. Opt. Express 2017, 25, 8274–8287. [Google Scholar] [CrossRef]
- Huang, P.; He, C.; Fan, B.; Dong, X. An optimization method of dynamic patterns based on aspheric microlens array. Optik 2019, 179, 592–598. [Google Scholar] [CrossRef]
Standard Surface Shape | Single-Sided Even Aspheric Surfaces | Double-Sided Even Aspheric Surfaces | |
---|---|---|---|
Diameter (μm) | 100 | 100 | 100 |
Thickness (mm) | 0.05 | 0.05 | 0.05 |
Material | PMMA | PMMA | PMMA |
Radius of curvature | Front surface: 0.548 Rear surface: ∞ | Front surface: 0.258 Rear surface: ∞ | Front surface: 0.511 Rear surface: −0.505 |
Cone coefficient | — | Front surface: −1 Rear surface: 0 | Front surface: −2 Rear surface: −2 |
Parameter | Specification |
---|---|
Radius of the surface (mm) | ±0.002 |
Conic of the surface | ±0.05 |
Thickness (mm) | ±0.005 |
Index | ±0.001 |
(mm) | (mm) | ||
---|---|---|---|
Single focal length | 2.420 | 3.948 | 1.528 |
Four focal length | 0.523 | 10.753 | 10.05 |
Component | Parameter | Value |
---|---|---|
Main lens | Focal distance (mm) | 100 |
Microlens array | Aperture (mm) | 20 |
Focal length (mm) | 0.5 | |
Diameter (mm) | 0.1 | |
Number of sub-microlens | 100 × 100 | |
Imaging sensor | Spatial resolution | 1280 × 1024 |
Image size (μm) | 4.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Li, P.; Zheng, X.; Liu, H.; Zhao, Y.; Sun, X.; Liu, W.; Zhou, S. Design of a Novel Microlens Array and Imaging System for Light Fields. Micromachines 2024, 15, 1166. https://doi.org/10.3390/mi15091166
Li Y, Li P, Zheng X, Liu H, Zhao Y, Sun X, Liu W, Zhou S. Design of a Novel Microlens Array and Imaging System for Light Fields. Micromachines. 2024; 15(9):1166. https://doi.org/10.3390/mi15091166
Chicago/Turabian StyleLi, Yifeng, Pangyue Li, Xinyan Zheng, Huachen Liu, Yiran Zhao, Xueping Sun, Weiguo Liu, and Shun Zhou. 2024. "Design of a Novel Microlens Array and Imaging System for Light Fields" Micromachines 15, no. 9: 1166. https://doi.org/10.3390/mi15091166
APA StyleLi, Y., Li, P., Zheng, X., Liu, H., Zhao, Y., Sun, X., Liu, W., & Zhou, S. (2024). Design of a Novel Microlens Array and Imaging System for Light Fields. Micromachines, 15(9), 1166. https://doi.org/10.3390/mi15091166