Real-Time Monitoring Method and Circuit Based on Built-In Reliability Prediction
Abstract
:1. Introduction
2. Degradation Mechanism and Monitoring Principle
2.1. TDDB Degradation Prediction Principle
2.2. NBTI Degradation Prediction Principle
2.3. HCI Degradation Prediction Principle
3. Implementation of Built-In Reliability Monitoring Circuits
3.1. TDDB Monitoring Circuits
3.2. NBTI Monitoring Circuits
3.3. HCI Monitoring Circuits
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhootda, N.; Yadav, A.; Neema, V. Design of leakage current sensing technique based continues NBTI monitoring sensor using only NMOS. Mater. Today Proc. 2023, 80, 2071–2075. [Google Scholar] [CrossRef]
- Teng, Q.; Hu, Y.; Cheng, R.; Wu, Y.; Zhou, G.; Gao, D. Reliability challenges in CMOS technology: A manufacturing process perspective. Microelectron. Eng. 2023, 281, 112086. [Google Scholar] [CrossRef]
- Navamani, D.J.; Sathik, J.M.; Lavanya, A.; Almakhles, D.; Ali, Z.M.; Aleem, S.H. Reliability Prediction and Assessment Models for Power Components: A Comparative Analysis. Arch. Comput. Methods Eng. 2023, 30, 497–520. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, M.S.; Bae, S.J. Reliability Prediction of Highly Scaled MOSFET Devices via Fractal Structure of Spatial Defects. IEEE Access 2019, 7, 143160–143168. [Google Scholar] [CrossRef]
- Peng, S.; Demircan, E.; Shroff, M.D.; Tan, S.X. Full-chip wire-oriented back-end-of-line TDDB hotspot detection and lifetime analysis. Integration 2020, 70, 90–98. [Google Scholar] [CrossRef]
- Sahakyan, H. Foldback Current Limiting in Low-Dropout Voltage Regulators with Aging Analysis Based Operating Envelope. In Proceedings of the 2023 IEEE East-West Design & Test Symposium (EWDTS), Batumi, Georgia, 22–25 September 2023; pp. 1–4. [Google Scholar]
- Ali, G.; Pathrose, J.; Kerkhoff, H.G. IJTAG Compatible Timing Monitor with Robust Self-Calibration for Environmental and Aging Variation. In Proceedings of the 2019 IEEE European Test Symposium (ETS), Baden-Baden, Germany, 27–31 May 2019; pp. 1–6. [Google Scholar]
- Ye, X.; Zhang, K.; Chen, C.; Li, Z.; Wang, Y.; Zhai, G. The threshold voltage degradation model of N Channel VDMOSFETs under PBT stress. Microelectron. Reliab. 2019, 91, 46–51. [Google Scholar] [CrossRef]
- Garba-Seybou, T.; Federspiel, X.; Bravaix, A.; Cacho, F. New Modelling Off-state TDDB for 130nm to 28 nm CMOS nodes. In Proceedings of the 2022 IEEE International Reliability Physics Symposium (IRPS), Dallas, TX, USA, 27–31 March 2022; pp. 11A.3-1–11A.3-7. [Google Scholar]
- Youhanis, H.A.; Hadi, M.A.; Hussin, H.; Muhamad, M.; Aziz, A.A.; Wahab, Y.A. Reliability Evaluation of Hot Carrier Injection Effects on MOSFET Devices. In Proceedings of the International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 3–5 August 2023; pp. 1505–1511. [Google Scholar]
- Coutet, J.; Marc, F.; Clément, J. Investigation of CMOS reliability in 28 nm through BTI and HCI extraction. Microelectron. Reliab. 2023, 146, 115007. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Wang, P.; Wu, Q.; Li, G. A 0.004% resolution & SAT < 1.8 μs on-chip adaptive anti-aging system using cuckoo intelligence-based algorithm in 65 nm CMOS. Integration 2021, 78, 135–143. [Google Scholar]
- Bhootda, N.; Yadav, A.; Neema, V.; Shah, A.P.; Vishvakarma, S.K. Series diode-connected current mirror based linear and sensitive negative bias temperature instability monitoring circuit. Int. J. Numer. Model. Electron. Netw. Devices Fields 2022, 35, e2953. [Google Scholar] [CrossRef]
- Dounavi, H.; Tsiatouhas, Y. An aging monitoring scheme for SRAM decoders. Integration 2023, 88, 108–115. [Google Scholar] [CrossRef]
- Anees, M.; Rahul, K.; Swarnkar, S.A.; Yachareni, S. Process monitoring vehicle for SRAM critical path using ring oscillator in 7 nm Finfet. In Proceedings of the 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto, ON, Canada, 21–24 April 2021; pp. 1–4. [Google Scholar]
- Sadeghi-Kohan, S.; Kamal, M.; Navabi, Z. Self-Adjusting Monitor for Measuring Aging Rate and Advancement. IEEE Trans. Emerg. Top. Comput. 2020, 8, 627–641. [Google Scholar] [CrossRef]
- Yu, L.; Ren, J.; Lu, X.; Wang, X. NBTI and HCI Aging Prediction and Reliability Screening During Production Test. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 3000–3011. [Google Scholar] [CrossRef]
- Singh, K.; Kalra, S. Reliability forecasting and Accelerated Lifetime Testing in advanced CMOS technologies. Microelectron. Reliab. 2023, 151, 115261. [Google Scholar] [CrossRef]
- Chen, Y.G.; Lin, C.; Wei, Y.C. A Novel NBTI-Aware Chip Remaining Lifetime Prediction Framework Using Machine Learning. In Proceedings of the International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, USA, 7–9 April 2021; pp. 476–481. [Google Scholar]
- McPherson, J.W. Time dependent dielectric breakdown physics—Models revisited. Microelectron. Reliab. 2012, 52, 1753–1760. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, G.; Shen, L.; Yu, P.; Jiang, Y. Life-time degradation of STT-MRAM by self-heating effect with TDDB model. Solid-State Electron. 2020, 173, 107878. [Google Scholar] [CrossRef]
- Strong, M.; Bhatheja, K.; Yang, R.; Chen, D. A Simple Monitor for Tracking NBTI in Integrated Systems. In Proceedings of the 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Lansing, MI, USA, 9–11 August 2021; pp. 1112–1115. [Google Scholar]
- Singh, K.; Kalra, S. A Comprehensive Assessment of Current Trends in Negative Bias Temperature Instability (NBTI) Deterioration. In Proceedings of the International Conference on Signal Processing and Communication (ICSC), Noida, India, 25–27 November 2021; pp. 271–276. [Google Scholar]
- Aleksandrov, O.V. Model of the Negative-Bias Temperature Instability of p-MOS Transistors. Semiconductors 2020, 54, 233–239. [Google Scholar] [CrossRef]
- Mahapatra, S.; Sharma, U. A Review of Hot Carrier Degradation in n-Channel MOSFETs—Part II: Technology Scaling. IEEE Trans. Electron Devices 2020, 67, 2672–2681. [Google Scholar] [CrossRef]
- Lahbib, I.; Doukkali, A.; Martin, P.; Imbert, G.; Raoulx, D. Hot carrier injection effect on threshold voltage of NMOSFETs. In Proceedings of the 2015 11th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Glasgow, UK, 29 June–2 July 2015; pp. 164–167. [Google Scholar]
- Jiang, H.; Shin, S.; Liu, X.; Zhang, X.; Alam, M.A. The Impact of Self-Heating on HCI Reliability in High-Performance Digital Circuits. IEEE Electron Device Lett. 2017, 38, 430–433. [Google Scholar] [CrossRef]
- Allen, P.E.; Holberg, D.R. CMOS Analog Circuit Design; Publishing House of Electronics Industry; Oxford University Press, Inc.: New York, NY, USA, 1987; pp. 383–386. [Google Scholar]
Reference | [11] | [12] | [13] | [14] | [16] | This Work |
---|---|---|---|---|---|---|
Process (nm) | Off chip | 65 | 45 | 90 | - | 180 |
Operating voltage (V) | 1.0–1.5 | 1.2 | 1 | 1 | 1.2 | 1.8/5 |
Temperature range | −30~115 °C | 27 °C | 25~125 °C | - | 27~127 °C | −40~120 °C |
Monitoring type | HCI and NBTI | None | NBTI | HCI and BTI | HCI and NBTI | All |
Embedded in SOC | No | Yes | Yes | Yes | Yes | Yes |
Real-time monitoring | No | Yes | Yes | Yes | Yes | Yes |
Consider process variations | No | Yes | No | No | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, W.; Chen, Y.; Li, X.; Zhou, X.; Song, B.; Chang, T. Real-Time Monitoring Method and Circuit Based on Built-In Reliability Prediction. Micromachines 2025, 16, 4. https://doi.org/10.3390/mi16010004
Ren W, Chen Y, Li X, Zhou X, Song B, Chang T. Real-Time Monitoring Method and Circuit Based on Built-In Reliability Prediction. Micromachines. 2025; 16(1):4. https://doi.org/10.3390/mi16010004
Chicago/Turabian StyleRen, Wenke, Yanning Chen, Xiaoming Li, Xinjie Zhou, Baichen Song, and Tianci Chang. 2025. "Real-Time Monitoring Method and Circuit Based on Built-In Reliability Prediction" Micromachines 16, no. 1: 4. https://doi.org/10.3390/mi16010004
APA StyleRen, W., Chen, Y., Li, X., Zhou, X., Song, B., & Chang, T. (2025). Real-Time Monitoring Method and Circuit Based on Built-In Reliability Prediction. Micromachines, 16(1), 4. https://doi.org/10.3390/mi16010004