Research on Helical Electrode Electrochemical Drilling Assisted by Anode Vibration for Jet Micro-Hole Arrays on Tube Walls
Abstract
:1. Introduction
2. Machining Principle and Simulation Analysis
2.1. Machining Principle
2.2. Simulation Analysis
3. Experimental Details
4. Results and Discussion
4.1. Influence of the Helical Electrode Rotation
4.2. Influence of Workpiece Vibration Amplitude
4.3. Influence of Workpiece Vibration Frequency
4.4. Fabrication of an Array of Jet Micro-Holes on the Wall of a Stainless-Steel Tube
4.5. Application of Tube Electrode with a Jet Micro-Hole Array in Electrochemical Cutting
5. Conclusions
- (1)
- High-speed rotation of the helical electrode and vibration of the workpiece enhance electrolyte flow within the machining gap, promoting rapid removal of electrolytic products and efficient renewal of the electrolyte;
- (2)
- Forward rotation of the helical electrode results in larger jet micro-hole diameters compared to reverse rotation. Moreover, as the rotation speed increases, the diameter of the machined jet micro-holes also increases;
- (3)
- Workpiece vibration leads to larger jet micro-hole diameters compared to non-vibrated processing. At optimal vibration amplitudes and frequencies, the jet micro-holes exhibit larger diameters and smaller deviations;
- (4)
- Using the optimal machining parameters, 10 jet micro-holes were successfully machined on the stainless-steel tube wall. A radial electrolyte flushing electrochemical cutting experiment was conducted using this tube with jet micro-holes as the electrode, resulting in the formation of a slit structure on a 5 mm thick stainless-steel 304 plate.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, D.; Wang, K.; Qu, N.S. Micro Wire electrochemical cutting by using in situ fabricated Wire electrode. CIRP Ann. Manuf. Technol. 2007, 56, 241–244. [Google Scholar] [CrossRef]
- Sharma, V.; Patel, D.S.; Jain, V.K.; Ramkumar, J. Wire electrochemical micromachining: An overview. Int. J. Mach. Tool. Manuf. 2020, 155, 103579. [Google Scholar] [CrossRef]
- Bi, X.L.; Zeng, Y.B.; Qu, N.S. Wire electrochemical micromachining of high-quality pure-nickel microstructures focusing on different machining indicators. Precis. Eng. 2020, 16, 14–22. [Google Scholar] [CrossRef]
- Klocke, F.; Herrig, T.; Zeis, M.; Klink, A. Experimental investigations of cutting rates and surface integrity in wire electrochemical machining with rotating electrode. Proc. CIRP 2018, 68, 725–730. [Google Scholar] [CrossRef]
- Fang, X.L.; Han, Z.; Chen, M.; Zhu, D. Pulse-current wire electrochemical machining with axial electrolyte flushing along a rotating helical Wire tool. J. Electrochem. Soc. 2020, 167, 113503. [Google Scholar] [CrossRef]
- Debnath, S.; Doloi, B.; Bhattacharyya, B. Review—Wire Electrochemical Machining Process: Overview and Recent Advances. J. Electrochem. Soc. 2019, 166, E293. [Google Scholar] [CrossRef]
- Yang, T.; Zeng, Y.B.; Hang, Y.S. Workpiece reciprocating movement aided Wire electrochemical machining using a tube electrode with an array of holes. J. Mater. Process. Technol. 2019, 271, 634–644. [Google Scholar] [CrossRef]
- Yang, T.; Zeng, Y.B.; Sang, Y.M.; Li, S.Y. Effect of structural parameters of array of holes in the tube electrode for electrochemical cutting. Int. J. Adv. Manuf. Technol. 2020, 107, 205–216. [Google Scholar] [CrossRef]
- Xu, C.C.; Fang, X.L.; Han, Z.; Zhu, D. Wire electrochemical machining with pulsating radial electrolyte supply and preparation of its tube electrode with micro-holes. Appl. Sci. 2020, 10, 331. [Google Scholar] [CrossRef]
- Huang, G.Y.; Wan, Z.P.; Yang, S.; Li, Q.Y.; Zhong, G.D.; Wang, B.; Liu, Z.Y. Mechanism investigation of micro-drill fracture in PCB large aspect ratio micro-hole drilling. J. Mater. Process. Technol. 2023, 316, 117962. [Google Scholar] [CrossRef]
- Mittal, R.K.; Yadav, S.; Singh, R.K. Mechanistic Force and Burr Modeling in High-speed Microdrilling of Ti6Al4V. Proc. CIRP 2017, 58, 329–334. [Google Scholar] [CrossRef]
- Wei, T.; Sun, S.; Zhang, F.; Wang, X.; Wang, P.; Liu, X.; Wang, Q. A review on laser drilling optimization technique: Parameters, methods, and physical-field assistance. Int. J. Adv. Manuf. Technol. 2024, 131, 5691–5710. [Google Scholar] [CrossRef]
- Dong, S.L.; Wang, Z.L.; Wang, Y.K.; Zhang, J. Micro-EDM drilling of high aspect ratio micro-holes and in situ surface improvement in C17200 beryllium copper alloy. J. Alloys Compd. 2017, 727, 1157–1164. [Google Scholar] [CrossRef]
- Thao, O.; Joshi, S.S. Analysis of heat affected zone in the micro-electric discharge machining. Int. J. Manuf. Technol. Manag. 2008, 13, 201–213. [Google Scholar] [CrossRef]
- Saxena, K.K.; Qian, J.; Reynaerts, D. A review on process capabilities of electrochemical micromachining and its hybrid variants. Int. J. Mach. Tool. Manuf. 2018, 127, 28–56. [Google Scholar] [CrossRef]
- Sen, M.H.; Shan, H.S. A review of electrochemical macro- to micro-hole drilling processes. Int. J. Mach. Tool. Manuf. 2005, 45, 137–152. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, S.F. Experimental study on electrochemical drilling of micro holes with high aspect ratio. Adv. Mater. Res. 2014, 941–944, 1952–1955. [Google Scholar] [CrossRef]
- Fan, Z.W.; Hourng, L.W. Electrochemical micro-drilling of deep holes by rotational cathode tools. Int. J. Adv. Manuf. Technol. 2011, 52, 555–563. [Google Scholar] [CrossRef]
- Tsui, H.P.; Hung, J.C.; You, J.C.; Yan, B.H. Improvement of electrochemical microdrilling accuracy using helical tool. Mater. Manuf. Process. 2008, 23, 499–505. [Google Scholar] [CrossRef]
- Liu, Y.; Li, M.; Niu, J.; Lu, S.; Jiang, Y. Fabrication of taper free micro-holes utilizing a combined rotating helical electrode and short voltage pulse by ECM. Micromachines 2019, 10, 28. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Y.; He, Z.; Peng, W.; Micro-Hole, D. Deep micro-hole Fabrication in EMM on stainless steel using disk micro-tool assisted by ultrasonic vibration. J. Mater. Process. Technol. 2016, 229, 475–483. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Diameter of helical electrode (mm) | 0.1 |
Rotational speed (rpm) | 0, 3000, −3000 |
Vibration amplitude (μm) | 10 |
Vibration frequency (Hz) | 100 |
Diameter of hole (mm) | 0.2 |
Depth of hole (mm) | 0.1 |
End-face machining gap (μm) | 20 |
Parameter | Value |
---|---|
Stainless-steel tube | Outer diameter 0.7 mm Inner diameter 0.4 mm |
Helical electrode | Diameter 0.1 mm Screw pitch 0.48 mm |
Electrolyte | NaNO3 solution 50 g/L |
Electrical parameter | 8 V-25%-100 kHz |
Feed rate (μm/s) | 0.8 |
Feed quantity (μm) | 200 |
Helical electrode rotation speed (rpm) | 1000, 2000, 3000, 4000, 5000 |
Workpiece vibration amplitude (μm) | 0, 2, 4, 6, 8, 10 |
Workpiece vibration frequency (Hz) | 50, 75, 100, 125, 150 |
Parameter | Value |
---|---|
Electrical parameter | 12 V-35%-50 kHz |
Electrolyte type | NaNO3 solution |
Electrolyte concentration (g/L) | 100 |
Inlet pressure (MPa) | 2.0 |
Feed rate (μm/s) | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Xiao, Y.; Hang, Y.; Wu, X.; Kong, W. Research on Helical Electrode Electrochemical Drilling Assisted by Anode Vibration for Jet Micro-Hole Arrays on Tube Walls. Micromachines 2025, 16, 86. https://doi.org/10.3390/mi16010086
Yang T, Xiao Y, Hang Y, Wu X, Kong W. Research on Helical Electrode Electrochemical Drilling Assisted by Anode Vibration for Jet Micro-Hole Arrays on Tube Walls. Micromachines. 2025; 16(1):86. https://doi.org/10.3390/mi16010086
Chicago/Turabian StyleYang, Tao, Yikai Xiao, Yusen Hang, Xiujuan Wu, and Weijing Kong. 2025. "Research on Helical Electrode Electrochemical Drilling Assisted by Anode Vibration for Jet Micro-Hole Arrays on Tube Walls" Micromachines 16, no. 1: 86. https://doi.org/10.3390/mi16010086
APA StyleYang, T., Xiao, Y., Hang, Y., Wu, X., & Kong, W. (2025). Research on Helical Electrode Electrochemical Drilling Assisted by Anode Vibration for Jet Micro-Hole Arrays on Tube Walls. Micromachines, 16(1), 86. https://doi.org/10.3390/mi16010086