Research Progress of Biosensing Technology in the Detection of Creatine Kinase Isoenzyme MB
Abstract
1. Introduction
2. Biosensors for CK-MB Detection
2.1. Electrochemical Biosensors
2.2. Chemiluminescent Biosensors
2.3. Optical Biosensors
Type of Biosensor | Recognition Elements | LOD (ng/mL) | Liner Range (ng/mL) | Type of Sample | Recovery Rate (%) | Ref. |
---|---|---|---|---|---|---|
Electrochemical | Antibody | 0.16 | 0.5~2000 | Human Serum | - | [33] |
Electrochemical | Antibody | 0.00088 | 0.001~2000 | Human Serum | 98.60~101.20 | [34] |
Electrochemical | Antibody | 0.26 | 5~100 | Urine | 105.92~115.10 | [35] |
Electrochemical | Aptamer | 0.0024 | 0.01~100 | Human Serum | - | [39] |
Electrochemical | enzyme | 110 | 190~2880 | Human Serum | - | [40] |
CL | Antibody | 0.296 | 0.01~500 | Human Serum | 90.00~110.00 | [44] |
CL | Antibody | 0.067 | 0.2~120 | Human Serum | 92.00~106.40 | [45] |
CL | Antibody | 1.37 | 0.08~10.24 | Human Serum | - | [46] |
ECL | Antibody | 0.000005 | 0.00005~10 | Human Serum | 98.00~103.00 | [48] |
Fluorescence | Antibody | 0.003182 | 0.02~6 | Human Serum | - | [50] |
FL-ICA | Antibody | 1 | 1~70 | Human Serum | - | [51] |
FL-ICA | Antibody | 0.029 | 0.85~100.29 | Human Serum | 90.17~112.63 | [52] |
FL-ICA | Antibody | 0.089 | 0.02~10 | Human Serum | - | [53] |
FL-LFA | Aptamer | 7.9 | 100~1500 | Human Serum | 96~108.67 | [54] |
FL-LFA | Aptamer | 0.63 | 5~2000 | Human Serum | 88.00~117.00 | [55] |
SPR | Antibody | 2.71 | 1.75~500.75 | Human Serum | - | [57] |
SPR | Antibody | 0.209 | 5~100 | Saliva | 98.11~107.50 | [58] |
SERS | Antibody | 0.0005 | 0.02~90 | Human Serum | - | [60] |
SERS | Antibody | 0.0097 | - | Human Serum | 97.30~113.20 | [61] |
DNA hydrogel | Aptamer | 1.161 | 8.6~26,875 | Human Serum | 96.63~106.25 | [62] |
DNA hydrogel | Aptamer | 0.016 | 0.0215~4300 | Human Serum | 97.93~106.24 | [63] |
RCA | Aptamer | 0.07 | 0.0043~2150 | Human Serum | 92.00~107.00 | [64] |
RGO | Antibody | 0.1 | 0.1~10 | Human Serum | - | [65] |
3. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kalita, A.; Gupta, N.; Woskie, L.; Yip, W. Providers’ knowledge of diagnosis and treatment best practices for acute myocardial infarction (AMI): Evidence from India using clinical vignettes. Health Serv. Res. 2021, 56, 41. [Google Scholar] [CrossRef]
- Simonsson, M.; Reitan, C.; Andell, P. Prevalence and temporal trends of risk factors among young patients with acute myocardial infarction—A nationwide cohort study. Eur. Heart J. 2024, 45, ehae666.1537. [Google Scholar] [CrossRef]
- Yoon, S.Y.; Kim, M.; Kim, H.; Bang, D.W.; Park, B.W.; Jeong, S.Y.; Lee, M.Y.; Kim, K.H.; Lee, N.; Won, J.H.; et al. Risk of hematologic malignancies in patients with acute myocardial infarction: A nationwide population-based cohort study. JACC CardioOncol. 2025, 7, 580–589. [Google Scholar] [CrossRef]
- Schaper, W.; Schaper, J. Pathophysiologie des Myokardinfarktes. Hämostaseologie 1992, 12, 037–041. [Google Scholar] [CrossRef]
- Zhou, X.; Yuan, Y.; Wang, Z.; Zhang, K.; Fan, W.; Zhang, Y.; Ma, P. Effect of continuous nursing on angina attack and quality of life in patients with coronary artery disease: A protocol for systematic review and meta-analysis. Medicine 2021, 100, e24536. [Google Scholar] [CrossRef]
- Del Buono, M.G.; Moroni, F.; Montone, R.A.; Azzalini, L.; Sanna, T.; Abbate, A. Ischemic cardiomyopathy and heart failure after acute myocardial infarction. Curr. Cardiol. Rep. 2022, 24, 1505–1515. [Google Scholar] [CrossRef]
- Domenico, T.; Rita, A.; Giacomo, S.; Diego, A.; Thelma, P.; Mariana, G.; Giampaolo, N.; Francesco, N.; Maria, G.; Francesco, F.; et al. Salivary biomarkers for diagnosis of acute myocardial infarction: A systematic review. Int. J. Cardiol. 2023, 371, 54–64. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, J.; Wang, M.; Zhang, X.; Zhou, M. Epidemiology of cardiovascular disease in China: Current features and implications. Nat. Rev. Cardiol. 2019, 16, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Herr, C.H. The diagnosis of acute myocardial infarction in the emergency department: Part 1. J. Emerg. Med. 1992, 10, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zheng, W.; He, Y.; Yang, R.; Zhang, W.; Luo, Z.; Zhang, Q.; Kuang, Y. A Review of the Clinical Diagnosis of Myocardial Infarction. Asian Case Rep. Vasc. Med. 2022, 10, 21–29. [Google Scholar] [CrossRef]
- Huang, X.B.; Bai, S.; Luo, Y. Advances in research on biomarkers associated with acute myocardial infarction: A review. Medicine 2024, 103, e37793. [Google Scholar] [CrossRef]
- Harris, B.M.; Nageh, T.; Marsden, J.T.; Thomas, M.R.; A Sherwood, R. Comparison of cardiac troponin T and I and CK-MB for the detection of minor myocardial damage during interventional cardiac procedures. Ann. Clin. Biochem. Int. J. Biochem. Lab. Med. 2000, 37, 764–769. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, P.; Shi, J.; Ma, Y.; Chen, Z.; Wang, T.; Jia, G. Associations of ambient temperature with creatine kinase MB and creatine kinase: A large sample time series study of the Chinese male population. Sci. Total Environ. 2023, 880, 163250. [Google Scholar] [CrossRef]
- Saadh, M.J.; Muhammad, F.A.; Albadr, R.J.; Bishoyi, A.K.; Ballal, S.; Bareja, L.; Naidu, K.; Rizaev, J.; Taher, W.M.; Alwan, M.; et al. Nanoparticle biosensors for cardiovascular disease detection. Clin. Chim. Acta 2025, 567, 120094. [Google Scholar] [CrossRef] [PubMed]
- Pesce, M.A.; Bodourian, S.H. A novel CK isoenzyme migrating between CK-MB and CK-BB. Clin. Biochem. 1987, 20, 37–42. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, R.; Zhang, Y.; Lei, X.; Zhang, Y. COVID-19 infection-induced worsening of recurrent CK-MB isozyme elevation due to macro-CK type 1 in a child: Case report. Eur. Heart J. Case Rep. 2024, 8, ytae594. [Google Scholar] [CrossRef]
- Neumeier, D.; Hofstetter, R. Radioimmunoassay for subunit B in isoenzymes CK-MB and CK-BB of creatine phosphokinase. Clin. Chim. Acta 1977, 79, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, J. Optical biosensors: An exhaustive and comprehensive review. Analyst 2020, 145, 1605–1628. [Google Scholar] [CrossRef]
- Chadha, U.; Bhardwaj, P.; Agarwal, R.; Rawat, P.; Agarwal, R.; Gupta, I.; Panjwani, M.; Singh, S.; Ahuja, C.; Selvaraj, S.K.; et al. Recent progress and growth in biosensors technology: A critical review. J. Ind. Eng. Chem. 2022, 109, 21–51. [Google Scholar] [CrossRef]
- Ying, R.; Li, N.; Zhang, Y.; Chen, H.; Zhang, S.; Feng, R.; Li, J.; Wang, S.; Mao, X. Innovations in smart enzyme biosensors: Advancing the detection of antibiotic residues in aquaculture. Biotechnol. Adv. 2025, 83, 108607. [Google Scholar] [CrossRef]
- Wasilewski, T.; Brito, N.F.; Szulczyński, B.; Wojciechowski, M.; Buda, N.; Melo, A.C.A.; Kamysz, W.; Gębicki, J. Olfactory receptor-based biosensors as potential future tools in medical diagnosis. TrAC Trends Anal. Chem. 2022, 150, 116599. [Google Scholar] [CrossRef]
- Tiryaki, E.; Zorlu, T. Recent advances in metallic nanostructures-assisted biosensors for medical diagnosis and therapy. Curr. Top. Med. Chem. 2024, 24, 930–951. [Google Scholar] [CrossRef]
- Bajgai, J.; Jun, M.; Oh, J.H.; Lee, J.-H. A perspective on the potential use of aptamer-based field-effect transistor sensors as biosensors for ovarian cancer biomarkers CA125 and HE4. Talanta 2025, 292, 127954. [Google Scholar] [CrossRef] [PubMed]
- Napit, R.; Jaysawal, S.K.; Chowdhury, R.; Catague, J.; Melke, H.; Pham, C.V.; Xu, H.; Jia, L.; Lin, J.; Hou, Y.; et al. Aptasensors and advancement in molecular recognition technology. Adv. Mater. Technol. 2025, 10, 2400504. [Google Scholar] [CrossRef]
- Xiao, H.; Han, S.; Zhu, M.; Lin, M.; Cheng, N.; Che, H. State of the art and perspectives of improving antibody performance in food immunosensors. TrAC Trends Anal. Chem. 2025, 191, 118308. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Lee, S.H.; Lee, U.J.; Fermin, C.D.; Kim, M. Immobilized enzymes in biosensor applications. Materials 2019, 12, 121. [Google Scholar] [CrossRef] [PubMed]
- Junior, D.W.; Deroco, P.B.; Hryniewicz, B.M.; Kubota, L.T. Strategies for Electrochemical Point-of-Care Biosensors. Annu. Rev. Anal. Chem. 2025, 18, 307–333. [Google Scholar] [CrossRef]
- Deng, M.Z.; Zhong, M.Y.; Li, M.L.; Huang, G.Q.; He, H.; Xiao, X.; Bai, R.B.; Ukwatta, R.H.; Mi, L.; Zhang, T.T.; et al. Research progress on electrochemiluminescence nanomaterials and their applications in biosensors-A review. Anal. Chim. Acta 2025, 1361, 344148. [Google Scholar] [CrossRef]
- Alharthi, S.; Madani, M.; Alkhaldi, H.; Aldaleeli, N.; Almarri, A.; Alnass, F.; Alzahrani, D.; Mahmoud, S.A.; Haque, A.; Attia, M.S.; et al. Advances and challenges in fluorescence-based biosensors for biological and chemical detection. ChemBioEng Rev. 2025, 12, e70006. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Z.; Yang, R.; Liu, M.; Feng, H.; Li, N.; Jin, M.; Zhang, M.; Shui, L. A liquid crystal-based biosensor for detection of insulin driven by conformational change of an aptamer at aqueous-liquid crystal interface. J. Colloid Interface Sci. 2022, 628, 215–222. [Google Scholar] [CrossRef]
- Chen, J.; Huang, S.; Zhang, M.; Liu, M.; Jin, M.; Liang, Q.; Liu, Z.; Shui, L. Optical sensing of insulin using liquid crystal orientational transitions triggered by insulin-aptamer interactions. Colloids Surf. A Physicochem. Eng. Asp. 2025, 716, 136682. [Google Scholar] [CrossRef]
- Song, X.; Zhang, J.; Li, S. Recent advances in biomarkers for cardiovascular diseases and biosensing precisely via modification method of electrochemical biosensor: A Review. Electrochem. Commun. 2025, 178, 107968. [Google Scholar] [CrossRef]
- Zhu, L.B.; Lu, L.; Wang, H.Y.; Fan, G.C.; Chen, Y.; Zhang, J.D.; Zhao, W.W. Enhanced organic-inorganic heterojunction of polypyrrole@ Bi2WO6: Fabrication and application for sensitive photoelectrochemical immunoassay of creatine kinase-MB. Biosens. Bioelectron. 2019, 140, 111349. [Google Scholar] [CrossRef] [PubMed]
- Cen, S.Y.; Feng, Y.G.; Zhu, J.H.; Wang, X.Y.; Wang, A.J.; Luo, X.; Feng, J.J. Eco-friendly one-pot aqueous synthesis of ultra-thin AuPdCu alloyed nanowire-like networks for highly sensitive immunoassay of creatine kinase-MB. Sens. Actuators B 2021, 333, 129573. [Google Scholar] [CrossRef]
- de Lima, L.F.; Lopes Ferreira, A.; Martinez de Freitas, A.D.; de Souza Rodrigues, J.; Lemes, A.P.; Ferreira, M.; de Araujo, W.R. Biodegradable and flexible thermoplastic composite graphite electrodes: A promising platform for inexpensive and sensitive electrochemical detection of creatine kinase at the point-of-care. ACS Appl. Mater. Interfaces 2023, 15, 18694–18706. [Google Scholar] [CrossRef]
- Demirbakan, B. A highly sensitive creatine kinase detection in human serum using 11-mercaptoundecanoic acid modified ITO-PET electrodes. Anal. Biochem. 2025, 700, 115768. [Google Scholar] [CrossRef]
- Zhong, T.; Jiang, Z.; Xing, Y.; Jiang, S.; Wu, Y.; Yao, S. Electrochemical immunosensor based on gold nanoparticles for the detection of creatine kinase as a cardiac marker. Int. J. Electrochem. Sci. 2024, 19, 100821. [Google Scholar] [CrossRef]
- Abedi, R.; Raoof, J.B.; Hashkavayi, A.B.; Darbandi, Z.J.; Abedi, P.; Darband, G.B. Innovations in aptamer-based biosensors for detection of pathogenic bacteria: Recent advances and perspective. Talanta 2025, 295, 128330. [Google Scholar] [CrossRef]
- Shin, S.R.; Zhang, Y.S.; Kim, D.J.; Manbohi, A.; Avci, H.; Silvestri, A.; Aleman, J.; Hu, N.; Kilic, T.; Keung, W.; et al. Aptamer-based microfluidic electrochemical biosensor for monitoring cell-secreted trace cardiac biomarkers. Anal. Chem. 2016, 88, 10019–10027. [Google Scholar] [CrossRef]
- Moreira, F.T.; Dutra, R.A.; Noronha, J.P.; Sales, M.G. Novel sensory surface for creatine kinase electrochemical detection. Biosens. Bioelectron. 2014, 56, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Aodeng, G.; Ga, L.; Ai, J. Aptamer-Based Electrochemical Biosensors: Signal Transduction Mechanisms, Application Progress, And Future Trends. Sens. Actuators Rep. 2025, 10, 100366. [Google Scholar] [CrossRef]
- Cetinkaya, A.; Kaya, S.I.; Ozkan, S.A. Biomedical field applications of electrochemical biosensors as diagnostic tools: A short review. Curr. Opin. Electrochem. 2025, 53, 101738. [Google Scholar] [CrossRef]
- Liu, M.-H.; Li, F.-Z.; Liu, W.-J.; Hu, J.; Liu, M.; Zhang, C.-Y. An electrostatic force-independent dephosphorylation-driven chemiluminescent biosensor for sensitive and rapid detection of poly(ADP-ribose) polymerase-1 in human breast tissues. Chem. Eng. J. 2023, 460, 141776. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, H.; Qi, S.; Chen, W. Early diagnosis of myocardial infarction in clinic through CK-MB detection using magnetic separation integrated with chemiluminescence. Anal. Methods 2016, 8, 2718–2722. [Google Scholar] [CrossRef]
- Zhao, K.; Tang, M.; Wang, H.; Zhou, Z.; Wu, Y.; Liu, S. Simultaneous detection of three biomarkers related to acute myocardial infarction based on immunosensing biochip. Biosens. Bioelectron. 2019, 126, 767–772. [Google Scholar] [CrossRef]
- Yin, B.; Wan, X.; Qian, C.; Sohan, A.S.M.M.F.; Wang, S.; Zhou, T. Point-of-care testing for multiple cardiac markers based on a snail-shaped microfluidic chip. Front. Chem. 2021, 9, 741058. [Google Scholar] [CrossRef]
- Li, C.; Lu, J.; Feng, Y.; Guo, Y.; Wang, J.; Song, Y.; Li, R.; Tian, L. Signal amplification strategy electrochemiluminescence based on porous graphite-phase carbon nitride: A novel ECL sensor for ultrasensitive detection of tigecycline. Carbon 2024, 233, 119857. [Google Scholar] [CrossRef]
- Adhikari, J.; Keasberry, N.A.; Mahadi, A.H.; Yoshikawa, H.; Tamiya, E.; Ahmed, M.U. An ultra-sensitive label-free electrochemiluminescence CKMB immunosensor using a novel nanocomposite-modified printed electrode. RSC Adv. 2019, 9, 34283–34292. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, X.; Liu, Q.; Xu, T. VG@nAu-based fluorescent biosensor for grading Alzheimer’s disease by detecting P-tau181 protein in clinical samples. Anal. Chim. Acta 2025, 1340, 343654. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.T.; Wu, N.; Yang, T.; Wang, J.H. Unusual selective response to glycoprotein over sugar facilitates ultrafast universal fluorescent immunoassay of biomarkers. Anal. Chem. 2020, 92, 5540–5545. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zhong, Y.; Yang, Y.; Li, K. Rapid diagnosis of acute myocardial infarction through integrated microfluidic chips for detection of characteristic targets. Anal. Biochem. 2024, 689, 115502. [Google Scholar] [CrossRef]
- Lai, X.H.; Liang, R.L.; Liu, T.C.; Dong, Z.N.; Wu, Y.S.; Li, L.H. A fluorescence immunochromatographic assay using europium (III) chelate microparticles for rapid, quantitative and sensitive detection of creatine kinase MB. J. Fluoresc. 2016, 26, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Zhang, B.; Piao, J.; Zhao, Q.; Gao, W.; Peng, W.; Kang, Q.; Zhou, D.; Shu, G.; Chang, J. High sensitive and multiple detection of acute myocardial infarction biomarkers based on a dual-readout immunochromatography test strip. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 1257–1266. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Peng, Z.; Lv, X.; Yu, Y.; Li, X.; Deng, Y. A novel signal amplified sandwich aptamer-based visual lateral flow assay based on self-assembly bifunctional nucleic acid for rapid and sensitive detection of CKMB. Microchem. J. 2024, 201, 110724. [Google Scholar] [CrossRef]
- Zhang, J.; Lv, X.; Feng, W.; Li, X.; Li, K.; Deng, Y. Aptamer-based fluorometric lateral flow assay for creatine kinase MB. Microchim. Acta 2018, 185, 364. [Google Scholar] [CrossRef]
- Shen, C.; Sui, W.; Zhou, J.; Han, W.; Dong, J.; Fang, B.; Wang, Z. Review of biosensors based on surface plasmon resonance. Laser Optoelectron. Prog. 2023, 60, 1106004. [Google Scholar]
- Kim, D.H.; Cho, I.H.; Park, J.N.; Paek, S.H.; Cho, H.M.; Paek, S.H. Semi-continuous, real-time monitoring of protein biomarker using a recyclable surface plasmon resonance sensor. Biosens. Bioelectron. 2017, 88, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.L.; de Lima, L.F.; Moraes, A.S.; Rubira, R.J.; Constantino, C.J.; Leite, F.L.; Delgado-Silva, A.O.; Ferreira, M. Development of a novel biosensor for creatine kinase (CK-MB) using Surface Plasmon Resonance (SPR). Appl. Surf. Sci. 2021, 554, 149565. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, J.; Yang, M.; Zhang, Y.; Zhang, X.; Xu, W.; Cao, J.; Zhu, L. Nucleic acid-mediated SERS Biosensors: Signal enhancement strategies and applications. Biosens. Bioelectron. 2025, 282, 117519. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, L.; Liu, B.; Ni, H.; Sun, L.; Su, E.; Chen, H.; Gu, Z.; Zhao, X. Quantitative and ultrasensitive detection of multiplex cardiac biomarkers in lateral flow assay with core-shell SERS nanotags. Biosens. Bioelectron. 2018, 106, 204–211. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, R.; Xing, Y.; Zhao, L.; Choo, J.; Yu, F. SERS-based immunoassay using gold-patterned array chips for rapid and sensitive detection of dual cardiac biomarkers. Analyst 2019, 144, 6533–6540. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, Y.; Zhao, X.; Zhang, J.; Peng, Y.; Bai, J.; Li, S.; Han, D.; Ren, S.; Qin, K.; et al. Target-responsive DNA hydrogel with microfluidic chip smart readout for quantitative point-of-care testing of creatine kinase MB. Talanta 2022, 243, 123338. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, J.; Peng, Y.; Bai, J.; Li, S.; Han, D.; Ren, S.; Qin, K.; Zhou, H.; Han, T.; et al. Design and synthesis of DNA hydrogel based on EXPAR and CRISPR/Cas14a for ultrasensitive detection of creatine kinase MB. Biosens. Bioelectron. 2022, 218, 114792. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Zhao, X.; Chen, M.; Peng, Y.; Bai, J.; Li, S.; Han, D.; Ren, S.; Qin, K.; et al. Dual sensitization smartphone colorimetric strategy based on RCA coils gathering Au tetrahedra and its application in the detection of CK-MB. Anal. Chem. 2021, 93, 16922–16931. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Xu, E.; Xie, J.; Liu, Y.; Deng, Z.; Wang, J.; Liu, Z.; Tian, J.; Liu, Y.; Ye, Q. A sliver deposition signal-enhanced optical biomolecular detection device based on reduced graphene oxide. Talanta 2022, 249, 123691. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Q.; Jin, M.; Liang, Q.; Lin, F.; Dai, Y.; Liu, Z.; Shui, L.; Chen, J. Research Progress of Biosensing Technology in the Detection of Creatine Kinase Isoenzyme MB. Micromachines 2025, 16, 1111. https://doi.org/10.3390/mi16101111
Pan Q, Jin M, Liang Q, Lin F, Dai Y, Liu Z, Shui L, Chen J. Research Progress of Biosensing Technology in the Detection of Creatine Kinase Isoenzyme MB. Micromachines. 2025; 16(10):1111. https://doi.org/10.3390/mi16101111
Chicago/Turabian StylePan, Qixing, Mingliang Jin, Qi Liang, Fengxia Lin, Yechu Dai, Zhenping Liu, Lingling Shui, and Jiamei Chen. 2025. "Research Progress of Biosensing Technology in the Detection of Creatine Kinase Isoenzyme MB" Micromachines 16, no. 10: 1111. https://doi.org/10.3390/mi16101111
APA StylePan, Q., Jin, M., Liang, Q., Lin, F., Dai, Y., Liu, Z., Shui, L., & Chen, J. (2025). Research Progress of Biosensing Technology in the Detection of Creatine Kinase Isoenzyme MB. Micromachines, 16(10), 1111. https://doi.org/10.3390/mi16101111