An All-in-One Testing Chip for the Simultaneous Measurement of Multiple Thermoelectric Parameters in Doped Polysilicon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structural Design and Fabrication
2.2. Experimental Setup
3. Results
3.1. Fabrication of Testing Structures
3.2. Simulation Results
3.3. Characterization
3.3.1. Resistivity of Doped PolySi
3.3.2. Seebeck Coefficient of Doped PolySi
3.3.3. Thermal Conductivity of Doped PolySi
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, Y.; Yang, H.; Ahn, J.; Kim, S. Column readout circuit with dual integration CDS for infrared imagers. IEICE Electron. Express 2016, 13, 20151037. [Google Scholar] [CrossRef]
- Chen, J.; Hokazono, H.; Tsujino, M.; Nakashima, D.; Hamamoto, K. Proposal of multiple-slot silica high-mesa waveguide for infrared absorption. IEICE Electron. Express 2013, 10, 20130871. [Google Scholar] [CrossRef]
- Graf, A.; Arndt, M.; Sauer, M.; Gerlach, G. Review of micromachined thermopiles for infrared detection. Meas. Sci. Technol. 2007, 18, R59–R75. [Google Scholar] [CrossRef]
- Zhou, N.; Ding, X.; Li, H.; Ni, Y.; Pu, Y.; Mao, H. A thermopile detector based on micro-bridges for heat transfer. Micromachines 2021, 12, 1554. [Google Scholar] [CrossRef]
- Bao, A.; Lei, C.; Mao, H.; Li, R.; Guan, Y. Study on a high performance MEMS infrared thermopile detector. Micromachines 2019, 12, 877. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.; Wise, K. A silicon-thermopile-based infrared sensing array for use in automated manufacturing. IEEE Trans. Electron Devices 2004, 179, 551–558. [Google Scholar]
- Oliver, A.; Wise, K. A 1024-element bulk-micromachined thermopile infrared imaging array. Sens. Actuator A Phys. 1999, 73, 222–231. [Google Scholar] [CrossRef]
- Schaufelbuhl, A.; Schneeberger, N.; Munch, U. Uncooled low-cost thermalimager based on micromachined CMOS integrated sensor array. IEEE J. MEMS 2001, 10, 503–510. [Google Scholar] [CrossRef]
- Boutchich, M.; Ziouche, K.; Yala, A.; Godts, P.; Leclercq, D. Package-free infrared micro sensor using polysilicon thermopile. Sens. Actuator A Phys. 2005, 121, 52–58. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, H.; Li, T.; Wang, Y.; Liu, Y.; Wang, Y. CMOS-compatible 8× 2 thermopile array. Sens. Actuator A Phys. 2010, 161, 120–126. [Google Scholar] [CrossRef]
- Lenggenhager, R.; Baltes, H.; Elbel, T. Thermoelectric infrared sensors in CMOS technology. IEEE Trans. Electron Devices 1992, 13, 454–456. [Google Scholar] [CrossRef]
- Schieferdecker, J.; Quad, R.; Holzenkämpfer, E.; Schulze, M. Infrared thermopile sensors with high sensitivity and very low temperature coefficient. Sens. Actuator A Phys. 1995, 47, 422–427. [Google Scholar] [CrossRef]
- Hornig, D.; O’keefe, B. The design of fast thermopiles and the ultimate sensitivity of thermal detectors. Rev. Sci. Instrum. 1947, 18, 474–482. [Google Scholar] [CrossRef]
- Jeffrey, G.; Snyder, A. Figure of merit ZT of a thermoelectric device defined from materials properties. Energy Environ. Sci. 2017, 10, 2280–2283. [Google Scholar]
- Xie, J.; Lee, C.; Wang, M.; Liu, Y.; Feng, H. Characterization of heavily doped polysilicon films for CMOS-MEMS thermoelectric power generators. J. Micromech. Microeng. 2009, 12, 125029. [Google Scholar] [CrossRef]
- Li, Y.; Toan, V.; Wang, Z.; Khairul, S.; Takahito, O. Formation and evaluation of silicon substrate with highly-doped porous Si layers formed by metal-assisted chemical etching. Nanoscale Res. Lett. 2021, 64, 64. [Google Scholar] [CrossRef] [PubMed]
- Kang, T. Enhanced Seebeck coefficient for a compressive n-type polysilicon film. Solid State Electron. 2014, 19, 24–27. [Google Scholar] [CrossRef]
- Zhou, H.; Kropelnicki, P.; Tsai, J.; Lee, C. Study of the thermoelectric properties of heavily doped poly-Si in high temperature. Procedia Eng. 2014, 94, 18–24. [Google Scholar] [CrossRef]
- Xie, J.; Lee, C.; Wang, M.; Tsai, J. Microstructures for characterization of Seebeck coefficient of doped polysilicon films. Microsyst. Technol. 2011, 17, 77–83. [Google Scholar] [CrossRef]
- Huang, P.; Fu, J.; Lu, Y.; Liu, J.; Zhang, J.; Chen, D. An on-chip test structure to measure the Seebeck coefficient of thermopile sensors. J. Micromech. Microeng. 2022, 32, 015004. [Google Scholar] [CrossRef]
- Liang, T.; Guan, Y.; Lei, C.; Wu, X.; Bai, Y.; Xiong, J. Design and fabrication of a low-cost thermopile infrared detector. Micromachines 2021, 12, 1134. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Ali, S.; Hopper, R.; Falco, C.; Pandey, P.; Oxley, C.; Popa, D.; Udrea, F. Crosstalk analysis of a CMOS single membrane thermopile detector array. Sensors 2020, 9, 2573. [Google Scholar] [CrossRef]
- Rogalski, A. Progress in focal plane array technologies. Prog. Quant. Electron. 2012, 26, 342–473. [Google Scholar] [CrossRef]
- Popa, D.; Udrea, F. Towards integrated mid-infrared gas sensors. Sensors 2019, 19, 2076. [Google Scholar] [CrossRef] [PubMed]
Dimensions (mm) ) | Materials in Test1 | Materials in Test2 | Materials in Test3 | Functions | |
---|---|---|---|---|---|
T1 | (263 × 40 + 514 × 20) × 0.42 (260 × 36 + 503 × 16) × 0.3 | N-polySi and P-polySi | P-polySi and Al | N-polySi and Al | For measuring and |
T2 | (299 × 50 + 680 × 20) × 0.42 (296 × 46 + 665 × 16) × 0.3 | N-polySi and P-polySi | P-polySi and Al | N-polySi and Al | For measuring and |
T3 | 670 15 0.42 662 × 11 × 0.3 | N-polySi and P-polySi | P-polySi and Al | N-polySi and Al | As a microheater |
T4 | 592 20 0.42 579 × 16 × 0.3 | N-polySi and P-polySi | P-polySi and Al | N-polySi and Al | For measuring |
T5 | 592 40 0.42 579 × 36 × 0.3 | N-polySi and P-polySi | P-polySi and Al | N-polySi and Al | For measuring |
T6 | 592 50 0.42 579 48 0.3 | N-polySi and P-polySi | P-polySi and Al | N-polySi and Al | For measuring |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Zhou, N.; Wu, J.; Shi, M.; Shi, Y.; Lei, C.; Mao, H. An All-in-One Testing Chip for the Simultaneous Measurement of Multiple Thermoelectric Parameters in Doped Polysilicon. Micromachines 2025, 16, 116. https://doi.org/10.3390/mi16020116
Shi L, Zhou N, Wu J, Shi M, Shi Y, Lei C, Mao H. An All-in-One Testing Chip for the Simultaneous Measurement of Multiple Thermoelectric Parameters in Doped Polysilicon. Micromachines. 2025; 16(2):116. https://doi.org/10.3390/mi16020116
Chicago/Turabian StyleShi, Lei, Na Zhou, Jintao Wu, Meng Shi, Yizhi Shi, Cheng Lei, and Haiyang Mao. 2025. "An All-in-One Testing Chip for the Simultaneous Measurement of Multiple Thermoelectric Parameters in Doped Polysilicon" Micromachines 16, no. 2: 116. https://doi.org/10.3390/mi16020116
APA StyleShi, L., Zhou, N., Wu, J., Shi, M., Shi, Y., Lei, C., & Mao, H. (2025). An All-in-One Testing Chip for the Simultaneous Measurement of Multiple Thermoelectric Parameters in Doped Polysilicon. Micromachines, 16(2), 116. https://doi.org/10.3390/mi16020116